UNIVERSIDAD AGRARIA DE LA HABANA "FRUCTUOSO RODRÍGUEZ PÉREZ"

INSTITUTO DE CIENCIA ANIMAL DEPARTAMENTO DE PASTOS Y FORRAJES

el Reciclaje de nutrientes y su impacto en sistemas ganaderos en el occidente de
 cuba

Tesis presentada en opción al grado científico de Doctor en Ciencias

Autor Ing. Agr. Gustavo Crespo López PhD

La Habana

DEDICATORIA

En primer lugar, dedico esta obra a nuestra triunfante Revolución Cubana y a su máximo líder Comandante Fidel Castro Ruz, sin cuya existencia hubiera sido imposible mi dedicación a la investigación científica.

A la memoria de mis padres, que nunca escatimaron esfuerzos para lograr mi superación intelectual.

A mi hijo y mi esposa, que tanta paciencia y tiempo dedicaron para poder lograr esta obra.

A mi nieta Thalía, por haber sido fuente de inspiración para la preparación de la Tesis.

A mi pequeño nieto Danny Yaniel, simiente del futuro luminoso.
A la memoria del compañero Silvano Fraga Toledo, quien realizó con calidad el grueso del trabajo técnico en la conducción de los experimentos y los muestreos en campo y en laboratorio.

AGRADECLIIENTOS

Agradezco en primer lugar al Instituto de Ciencia Animal, por haberme ofrecido durante 45 años, todo el apoyo material y moral necesarios para desarrollar mis investigaciones.

Al Departamento de Pastos y Forrajes de esta institución, por haberme inculcado la ética en todas las acciones que conlleva la investigación científica.

A los investigadores Idalmis Rodríguez García y Sandra Lok Mejías, con las que comparto el trabajo del grupo de Fertilidad del Suelo en nuestro departamento y con las que hemos analizado en conjunto los resultados de la presente Tesis.

A los doctores Rafael Herrera García, Gustavo Febles Pérez, César Padilla Corrales, Omar Martínez Zubiaur y Tomás Ruiz Vázquez, por sus acertados consejos y críticas constructivas.

A la Doctora en Ciencias Veterinarias PHD Odilia Gutiérrez Borroto, por la paciente revisión del material de Tesis y sus oportunas críticas.

Al Dr. Andrés Senra Pérez, por la revisión exhaustiva de este material y sus saludables críticas.

A la PHD Bertha Chongo García, por sus gestiones para que esta Tesis pudiera ser defendida en el Tribunal correspondiente.

Al Dr. Omelio Borroto Leal, Director actual del Instituto de Ciencia Animal y a su Consejo Científico Ramal, por haber confiado en mí la presentación de la Tesis.

A todos los que de una forma u otra pusieron un granito de arena en el desarrollo de las investigaciones conducidas.

SÍNTESIS

Se condujeron investigaciones en parcelas experimentales, en pastoreo directo y en fincas ganaderas del occidente de Cuba para identificar y cuantificar las vías más importantes de reciclaje de los nutrientes, con énfasis en el N, P y K, en el sistema suelo-pasto-animal. Se demostró que las excreciones de los animales (bostas y orina) participan en mayor cuantía en el ecosistema de pastizal, y ambos influyen favorablemente en el rendimiento y la composición química del pasto y del suelo, en los que inciden de forma decisiva los factores climáticos. Se cuantificaron las pérdidas de N-NH3 en las bostas y las micciones y se comprobó el efecto directo de la temperatura y las lluvias en la magnitud de este proceso. Otra vía importante de reciclaje de nutrientes lo constituye la hojarasca de los pastos, comprobándose que las leguminosas producen mayor cantidad de las mismas y reciclan más rápidamente los nutrientes que las gramíneas, debido al mayor contenido de N y menor relación C / N en las primeras. En los pastizales más diversificados, con presencia de gramíneas, leguminosas, árboles y arbustos, se produce mayor cantidad de hojarasca que aportan más nutrientes al ecosistema que los pastizales con pocas especies de gramíneas. Se demuestra que las gramíneas producen anualmente importante volumen de biomasa radicular, que puede retornar al suelo importantes cantidades de N, P y K. Por su parte, se verificó que el agua de lluvias puede aportar al ecosistema alrededor de $0.02 \mathrm{~kg} / \mathrm{ha}$ de N por cada mm caído, la mayor parte como $\mathrm{N}-\mathrm{NH} 3$. Los estudios de balance de nutrientes en fincas ganaderas, demostraron que el mayor desbalance de N, P y K en el suelo y a nivel de la finca se produce por la no incorporación de las excreciones en el pastizal, mientras que la presencia de L. leucocephala siempre favoreció el reciclaje. El software "RECICLAJE", al igual que la metodología para interpretar el grado de fertilidad integral del suelo, demostraron ser útiles herramientas de trabajo en las fincas ganaderas. Esta Tesis constituye un documento que expone resultados valiosos para el conocimiento del reciclaje de los nutrientes en el sistema suelo-pasto-animal y ofrece un software y dos metodología útiles parta la investigación científica, la docencia y la producción animal.

INDICE

Pág.
INTRODUCCIÓN GENERAL 13
CAPÍTULO I. MATERIALES Y MÉTODOS GENERALES 18
CAPÍTULO II. COMPORTAMIENTO DE LAS EXCRECIONES
DE LOS ANIMALES EN EL PASTIZAL 28
Experimento I. Estudio de la distribución espacial de las bostas de vacas lecheras en el pastizal 30
Experimento 2. Estudio de la tasa de descomposición de las bostas en el pastizal 34
Experimento 3. Efecto de las bostas y la orina en el pasto y en el suelo 41
Experimento 4. Estudio de la volatilización de amoníaco de las bostas y la orina de vacas lecheras 55
Conclusiones del Capitulo I 61
CAPÍTULO III. COMPORTAMIENTO DE LA HOJARASCA 63
Experimento 5. Estudio de la producción de hojarasca de los pastos y nutrientes retornados con ella al ecosistema de pastizal 64
Experimento 6. Producción de hojarasca y retorno de N, P y K en dos pastizales que difieren en la composición de especies 73
Conclusiones del Capítulo III 77
CAPÍTULO IV. OTRAS VÍAS DE RECICLAJE: BIOMASA RADICULAR
Y AGUA DE LLUVIA 78
Experimento 7. Estudio de la biomasa de raíces de los pastos y el aporte de nutrientes al ecosistema 79
Experimento 8. Determinación del aporte de N por el agua
de lluvia 83
Conclusiones del Capítulo IV 85
CAPÍTULO V. RECICLAJE DE NUTRIENTES EN SISTEMAS
DE PRODUCCIÓN ANIMAL 86
Experimento 9. Estudio del balance de nitrógeno, fósforo y potasio en sistemas de producción de ganado de carne en pastoreo 87
Experimento 10. Balance de N, P y K en un sistema de producción de leche con pastizal de C. nlemfuensis y banco de biomasa de Pennisetum purpureum cv. CT-115 93
Conclusiones del Capítulo V 101
CAPÍTULO VI. MODELACIÓN DEL RECICLAJE DE LOS
NUTRIENTES 102
Creación del Modelo RECICLAJE 102
Resultados obtenidos con la aplicación del software RECICLAJE en vaquerías lecheras comerciales 106
Conclusiones del Capítulo VI 114
CAPÍTULO VII. METODOLOGÍA PARA LA EVALUACIÓN INTEGRAL
DEL ESTADO DE FERTILIDAD DEL SUELO 115
Conclusiones del Capítulo VII 127
CONSIDERACIONES FINALES 128
Conclusiones generales 133
Recomendaciones generales 135
Aportes científicos 136
Novedad científica 137
Referencias 138
Anexo 1. Manual de usuario del programa "Reciclaje" 154
Anexo 2. Metodología para la interpretación del grado de fertilidad del suelo en la finca ganadera 175
Anexo 3. Metodología para la determinación de la volatilización del \mathbf{N} amoniacal de las bostas y la orina en el campo 178
Avales, Premios y Libros 183

Listado de tablas

1	Características de las bostas depositadas en el pastizal ${ }^{1}$
2	Contenido de \mathbf{N} y MS de las bostas
3	Disponibilidad de pasto en las manchas de fertilidad en el pastizal
4	Composición mineral del pasto en las manchas de fertilidad (\% b. seca)
5	Relación entre la velocidad de desaparición de las bostas y los factores climáticos temperatura y lluvia caída
6	Tasas de desaparición de las bostas (g MS/mes) en la estación lluviosa
7	Coeficientes de correlación entre la velocidad de desaparición de las bostas y los factores temperatura y lluvia caída en la estación seca
8	Tasa de desaparición de las bostas en la estación seca (g MS/mes)
9	Composición química de las bostas (\% base seca)
10	Composición de N, P y K de la orina (mg/100 ml)
11	Efecto de las bostas depositadas en diferentes meses del año sobre el rendimiento de materia seca del pasto ($\mathrm{g} / \mathrm{m}^{2}$)
12	Efecto de la orina depositada en diferentes meses del año sobre el rendimiento de MS del pasto ($\mathrm{g} / \mathrm{m}^{2}$)
13	Efecto de la bosta depositada en diferentes meses del año sobre los contenidos de N y P del pasto
14	Efecto de la bosta depositada en diferentes meses del año sobre el contenido de K del pasto
15	Efecto de la bosta depositada en diferentes meses del año sobre

	los contenidos de Cay Mg del pasto
16	Efecto de orina depositada en diferentes meses del año en el contenido de N y K del pasto
17	Efecto de las bostas y la orina en los contenidos de $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ y $\mathrm{K}_{2} \mathrm{O}$ del suelo
18	Efecto de las bostas y la orina en el Mg y la MO del suelo
19	Coeficiente de determinación, varianza residual y parámetros de Modelo de Gauss ajustado en cda experimento con las bostas
20	Coeficientes de determinación y ecuación de mejor ajuste en cada experimento
21	Hojarasca acumulada durante 1 año por las leguminosas perennes
22	Modelos de mejor ajuste entre la edad de las leguminosas perennes y la hojarasca acumulada por ellas
23	Rangos de acumulación de hojarasca de las gramíneas perennes
24	Producción de hojarasca de A. Lebbeckdesde diciembre hasta marzo
25	Composición química de la hojarasca de las diferentes especies (\% base seca)
26	Modelos que relacionan el N liberado por la hojarasca de las leguminosas en función del tiempo
27	Modelos que relacionan el P liberado por la hojarasca de las leguminosas en función del tiempo
28	Modelos que relacionan el K liberado por la hojarasca de las leguminosas en función del tiempo
29	Producción de hojarasca de las especies vegetales que compopnen cada pastizal
30	Aporte de N, P y K por la hojarasca de cada pastizal
31	Biomasa de raíces de los pastos ($\mathrm{g} / \mathrm{m}^{2}$ seco al aire)

32	Composición química promedio de las raíces de los pastos (\% base seca)
33	Estimado de N, P y K reciclado anualmente por las raíces de los pastos en la capa de 0-15 cm de profundidad
34	Concentración y aporte de N en las lluvias durante el período estudiado
35	Balaqnce de N, P y K en el sistema con pastos naturales
36	Balance de N, P y K en el sistema con pastos nativos y leucaena en toda el área
37	Características de las unidades lecheras en estudio
38	Balance de N, P y K en el suelo y a nivel de sistema de cada vaquería
39	Porcentaje que representan las diferentes vías de entrada de \mathbf{N} en el suelo de las fincas
40	Porcentaje que representan las diferentes vías de entrada y salida de \mathbf{N} en el sistema general de las fincas
41	Unidades seleccionadas para el estudio
42	Tipos de suelos en cada una de las unidades
43	Características generales del pastizal en las unidades lecheras
44	Puntuación asignada a cada indicador de la fertilidad del suelo
45	Puntuación calculada de la fertilidad del suelo en las unidades estudiadas

LISTADO DE FIGURAS

1	Curva de desaparición de la bosta depositada en el primer trimestre de la época de lluvias
2	Curva de desaparición de la bosta depositada en el segundo trimestre de la época de lluvias
3	Curva de desaparición de la bosta en el primer trimestre de la época de seca
4	Curva de desaparición de la bosta en el segundo trimestre de la estación de seca
5	Curva de volatilización de N-NH3 de la bosta en los 3 experimentos
6	Curva de volatilización de N-NH3 de la orina en los 3 experimentos
7	Curvas de descomposición de la hojarasca de diferentes especies de pastos
8	Reciclaje de N en el sistema
9	Reciclaje de P en el sistema
10	Reciclaje de K en el sistema
11	Figuras radiales que muestran el valor de la puntuación de cada indicador en las diferentes vaquerías

Listado de abreviaturas y símbolos

AF	Alta fertilidad
MF	Mediana fertilidad
BF	Baja fertilidad
B. fresca	Base fresca
B. seca	Base seca
Ca	Calcio
cm	Centímetro
cm^{2}	Centímetro cuadrado
Cmol(+)/kg	Centimol por kilogramo
col.	Otros autores
g	gramo
ha	Hectárea
hrs	Horas
HCL	Ácido clorhídrico
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Ácido sulfúrico
Kg	Kilogramo
Kg/ha	Kilogramos por hectárea
K	Potasio
L	Litro
Mg	Magnesio
m^{2}	Metro cuadrado
ml	Mililitro
mm	Milímetro
$\mathrm{mg} \mathrm{CO} 2 / \mathrm{g}$	Miligramos de CO_{2} por gramo
MS	Materia seca

N	Nitrógeno
NaOH	Hidróxido de Sodio
$\mathrm{N}-\mathrm{NO}_{3}$	Nitrógeno en forma de nitrato
$\mathrm{N}-\mathrm{NH}_{3}$	Nitrógeno en forma de amoníaco
P	Fósforo
pH	Grado de reacción del suelo
p.p.m	Partes por millón
t	tonelada
UGM	Unidad de ganado mayor $=500 \mathrm{Kg}$ de peso vivo
vc.	Variedad cultivada
${ }^{\circ} \mathrm{C}$	Grados Celsius
\%	Por ciento

Introducción general

Abstract

El avance creciente en el conocimiento de las diversas vías de reciclaje de los nutrientes en los disímiles sistemas agrícolas, ha contribuido decisivamente al desarrollo de la agricultura sostenible en el mundo (Murgueitio e Ibrahim, 2003). Este avance alcanza mayor interés en los países en desarrollo y en vías de desarrollo, principalmente en la zona tropical y subtropical, donde los recursos y el poder económico son, por lo general, limitados (Gómez y col. 2003).

En la actividad de la ganadería bovina, el aspecto del reciclaje de los nutrientes cobra mayor importancia que en las restantes actividades agrícolas, pues una parte muy significativa de los nutrientes son retornados de nuevo a los sistemas mediante las excreciones (bostas y orina) de los animales (Granstedt, 2000; Groot y col. 2003) y otra proporción, no despreciable, recicla a través de las raíces y la hojarasca del estrato herbáceo que compone el ecosistema de pastizal (Jianhui y col. 2006).

Si se tiene en cuenta que la mayoría de las investigaciones publicadas acerca de este tema, provienen de áreas templadas y subtropicales y, muchas veces, bajo condiciones controladas, el estudio de la distribución de las bostas por las vacas en los pastizales tropicales y el reciclaje de los nutrientes por las mismas, constituye un tema de mucho interés y actualidad (Powell y col. 2010).

La velocidad de descomposición de las bostas en el pastizal y su efecto en el pasto han sido, en general, temas poco estudiados en las condiciones de clima tropical. Los primeros resultados en Cuba fueron señalados por Arteaga y col. (1991) y Crespo y col. (1995), quienes encontraron que durante la estación seca del año, las bostas necesitaron entre 90 y 210 días para la total descomposición. Sin embargo, se ha reconocido que la velocidad de desaparición varía en dependencia de diversos factores, tales como, la consistencia, la composición química, la diversidad de la biota presente,
la estación climática y el sistema de pastoreo, entre otros (Hirata y col. 1989; Franco y col. 2006).

Por otra parte, desde hace mucho tiempo se considera que el reciclaje del N mediante las excreciones de los animales resulta de mucho interés para mantener la fertilidad del suelo en los pastizales. Sin embargo, se ha revelado que ocurren pérdidas sustanciales de este elemento, principalmente en la forma de amoniaco, en las áreas donde se deposita la orina (Saarijarvis y col. 2006) y muchos autores han indicado valores de volatilización que han variado en el rango de $6-70 \%$, en dependencia del tipo de suelo, clima y vegetación (Dammgel y Hutchings, 2006).

Por su parte, el flujo de N a través de las bostas es otro proceso de gran importancia en el reciclaje del N en los sistemas intensivos de pastoreo, pues de $1 / 3$ a $1 / 2$ del N excretado por los vacunos ocurre por esta vía, aunque también un importante porcentaje se volatiliza en forma de amoníaco (Chadwick y col. 2011).

Debido a que, en general, el porcentaje de utilización de los pastos por los rumiantes en pastoreo suele variar entre 40 - 60\% (Thomas, 1992), el retorno de nutrientes vegetales al suelo mediante la hojarasca del pastizal puede ser mayor que el que retorna por las excreciones de los animales. El reciclaje de estos nutrientes vegetales al suelo y el subsiguiente consumo por la vegetación del pastizal, puede ser manipulado mediante la selección de especies de pastos que produzcan elevada cantidad de hojarasca, de fácil descomposición.

Esto puede ser manejado de forma tal, que se logre sincronizar el suministro de nutrientes al suelo por esta vía y la demanda del pasto (Sánchez et al, 1989).
Para desarrollar este manejo se requiere de un conocimiento adecuado de las características de la descomposición y liberación de nutrientes de la hojarasca que producen las diferentes especies de plantas empleadas comúnmente en los pastizales (Bolan y col. 2004).

Este aspecto cobra mayor importancia en los sistemas silvopastoriles, ya que la producción de hojarasca en estos ecosistemas debe ser superior que en los pastizales sin árboles, lo cual puede representar una proporción importante de la entrada de nutrientes que necesita el estrato herbáceo. Esto pudiera contribuir a mantener aún más la productividad de los pastizales (Pentón 2000; Crespo y Fraga 2002).

En la literatura científica apenas aparece información acerca de las características de la biomasa de las raíces de los pastos más comunes y su aporte de nutrientes al suelo, así como el aporte de N que realiza el agua de lluvia en los diferentes períodos del año (Benedict, 1981 y Fundora y col. 1983). Consideramos que este conocimiento resultaría de mucho interés, pues contribuiría a una comprensión más exacta de las vías de reciclaje de los nutrientes en los ecosistemas de pastizales.

Los estudios publicados con relación al reciclaje de los nutrientes en los pastizales, han sido muy limitados, pues solo se han considerado aspectos muy aislados de este proceso (p. ej. pérdidas de N gaseoso de las excreciones, tasas de descomposición de la hojarasca del pastizal, etc.) y, en algunos casos, se han propuesto modelos y programas de simulación para representar con valores este reciclaje, pero de una forma estática y no dinámica, como realmente ocurre (Hutchings y col. 2007).

Se conocen numerosos Modelos que simulan el reciclaje de los nutrientes en los sistemas muy intensivos de producción de leche en Europa y en América, pero en dichos Modelos solo se ha hecho énfasis en las pérdidas de N por lavado y volatilización en los sistemas ganaderos con altos insumos de fertilizantes y riego (Jarvis 1993; Saggar y col. 2007).

No obstante, en los sistemas semintensivos de producción de leche y de carne vacuna, abundante en la agricultura de bajos insumos y pobres recursos, el conocimiento del flujo natural de los nutrientes que ocurre dentro de cada finca, resulta de vital importancia para incrementar el reciclaje de los nutrientes y, con ello, lograr producciones animales sostenibles.

Por todo lo anterior, es necesario la realización de investigaciones que permitan conocer cómo se produce el reciclaje de los nutrientes en las nuevas tecnologías que plantea la ganadería sostenible y así poder manipular este proceso para lograr la estabilidad y la sostenibilidad de los sistemas ganaderos. En este sentido, la creación de Modelos de simulación del reciclaje de los nutrientes, de fácil ejecución por los productores, resultaría de gran utilidad en las fincas ganaderas destinadas a la producción de leche y carne.

Aunque se conocen numerosos indicadores que permiten interpretar el grado de fertilidad del suelo en los pastizales, los mismos muestran amplias variaciones espaciales y temporales atribuibles, fundamentalmente, a la ineficiente distribución de las excreciones de los animales y a las disímiles condiciones de suelo y composición botánica (Mader y col. 2002). Por tales razones, la interpretación del grado de fertilidad del suelo en un pastizal no es una tarea fácil y, por ello, es necesario conocer el valor de los indicadores relacionados con su composición química, sus propiedades físicas y su actividad biológica, como entes integradores del concepto de fertilidad general (Schipper y Sparling 2000).

La proposición de procedimientos sencillos, que ayuden a los productores a conocer el estado integral de la fertilidad de sus suelos y que les sirva como herramienta para la toma de decisiones, constituye una tarea de mucha importancia para lograr la sostenibilidad en la ganadería.

A partir de 1995, se inició en el Instituto de Ciencia Animal, una secuencia de investigaciones relacionadas con el reciclaje de los nutrientes en el sistema suelo-planta-animal, cuyos resultados han permitido cuantificar su aporte a los ecosistemas de pastizales en Cuba, por lo que se le otorgó el Premio Nacional de la Academia de Ciencias en el año 2000. A partir de esa fecha, se apoyaron aún más dichas investigaciones, cuyos resultados principales forman parte de la presente Tesis.

Por lo anterior nos propusimos la siguiente hipótesis de trabajo:

Hipótesis: El conocimiento y dominio de las vías más importantes del reciclaje de los nutrientes en el ecosistema suelo-planta-animal, permitiría interpretar el grado de estabilidad actual en los sistemas ganaderos y, con ello, proponer métodos para lograr la sostenibilidad de los mismos.

Para reafirmar o rebatir la hipótesis propuesta, nos trazamos el siguiente objetivo general:

Objetivo general: Poner a disposición de la ganadería tropical una herramienta que permita la cuantificación de los nutrientes que reciclan en los ecosistemas ganaderos en pastizales y que ayude a optimizar su aprovechamiento hasta el nivel de la finca o unidad ganadera.

Objetivos específicos:

- Estudiar el comportamiento de las excreciones (bostas y orina) en el ecosistema de pastizal y su efecto en el rendimiento y la composición química del pasto y el suelo.
- Determinar la producción de hojarasca en los pastizales, su velocidad de desaparición y su efecto en el retorno de nutrientes al ecosistema.
- Estudiar la biomasa de raíces de los pastos y el agua de lluvias como recicladores de nutrientes en el ecosistema.
- Investigar el reciclaje de N, P y K en sistemas de producción de ganado de carne y de leche.
- Obtener y validar en fincas ganaderas el Modelo "RECICLAJE" para simular el balance de los nutrientes en el sistema suelo-pastizal-animal.
- Lograr una Metodología de fácil aplicación que permita interpretar el estado actual de la fertilidad integral del suelo en la finca ganadera.

CAPÍTULO I

MATERIALES Y MÉTODOS GENERALES

Todos los experimentos que conforman la presente Tesis fueron conducidos entre los años 1996 a 2009. Los estudios básicos se realizaron en unidades de producción del Instituto de Ciencia Animal, mientras que la validación y la aplicación práctica del software "Reciclaje" se llevaron a cabo en 9 vaquerías de la Empresa Genética "Valle del Perú", de la actual provincia Mayabeque, y en las Facultades de Zootecnia y Veterinaria de las Universidades Agropecuarias de La Habana y Villa Clara. Por su parte, en otras 6 vaquerías, ubicadas en granjas de la empresa antes mencionada, se desarrolló la Metodología que se propone para la determinación del estado de la fertilidad integral de los suelos. En el presente Capítulo presentamos los materiales y métodos comunes empleados en las investigaciones conducidas, mientras que en el desarrollo de cada estudio describiremos los procedimientos específicos empleados en cada experimento.

1.1 Especies de pastos

El estudio sobre la capacidad de producción de hojarasca, su tasa de descomposición y su liberación de nutrientes al ecosistema, fueron determinadas en las especies: desmodium (Desmodium ovalifolium), kudzu (Pueraria phaseoloides (Roxb.) Benth., stylo (Stylosanthes guianensis (Aubl.) Sw.) y glicine/siratro (Neonotonia wightii/Macroptilium atropourpureum) entre las leguminosas perennes; mucuna prieta (Styzolobium atérrimum vc. semilla prieta), mucuna blanca (S. atérrimum vc. semilla blanca) y canavalia (Cannavalia ensiformis (L.) DC.) entre las leguminosas temporales; estrella (Cynodon nlemfuensis vc. panameño), guinea (Panicum máximum Jacq vc. likoni), brachiaria (Brachiaria decumbens Stapf) y los pastos naturales tejana (Paspalum notatum Flugge) y espartillo (Sporobolus indicus L. R. Br.) entre las gramíneas y leucaena (Leucaena leucocephala, vc. Perú), Albizia (Albizia lebbeck) y gandul (Cajanus cajan) entre las plantas arbustivas.

La especie estrella vc. panameño ocupó la mayor área del pastizal en los experimentos 1,3 y 10, mientras que la biomasa radicular y su aporte de nutrientes se estudió en las gramíneas guinea, braquiaria y tejana en el experimento 7 .

1.2 Animales utilizados

En los 4 experimentos que conforman el Capítulo II, relacionados con el comportamientos de las excreciones (bostas y orina) en el pastizal, las vacas eran de la raza Holstein, mientras que la raza Siboney (5/8 Holstein, 3/8 Cebú) predominó en los experimentos 6 y 10, así como en las vaquerías donde se validó y aplicó el software "Reciclaje" y en las que se empleó la metodología propuesta para interpretar el estado integral de la fertilidad del suelo.

Por su parte, la raza Cebú conformó la mayoría de los animales de carne en el experimento 9.

1.3 Muestreo de las bostas

Para la modelación de la distribución espacial de las bostas en el pastizal se calcularon las tablas de frecuencia para cada uno de los conteos y muestreos realizados, se estimaron las medias y varianzas correspondientes y se utilizó la dócima X^{2} para probar la precisión de la distribución ajustada.

Para el análisis químico se muestrearon 50 bostas frescas en un pastizal de pasto estrella (Cynodon nlemfuensis cv. panameño), en un sistema de pastoreo rotacional con alta carga instantánea de 288 UGM/ha/día y cuartones de $1250 \mathrm{~m}^{2}$ cada uno. Las bostas fueron recolectadas en bolsas de polietileno al día siguiente de la salida de las vacas del cuartón. Inmediatamente fueron trasladadas al laboratorio, en donde se tomaron muestras representativas de cada una para determinar el porcentaje de MS y los contenidos de N, P, K, Ca y Mg.

Por su parte, la tasa de desaparición (pérdida de peso de la bosta) se calculó a partir de la ecuación ajustada para cada mes de deposición, utilizando para ello el coeficiente de regresión según el ajuste de los datos, donde Y representó el valor de la variación del peso (g MS/mes) y X los días transcurridos a partir de la deposición. Los resultados obtenidos se analizaron a partir de los modelos de regresión lineal, cuadráticos y logarítmicos seleccionados y se calcularon las correlaciones múltiples entra las variaciones del peso seco de las bostas y los valores climáticos de temperatura y lluvia caída.

1.4 Muestras de orina

En los meses de febrero, marzo y abril del año 2002 se colectaron 36 muestras de orina de las vacas de una vaquería mediante la introducción de un catéter en horas de la mañana (6:00 - 6:30 a.m). Las muestras frescas fueron colocadas en recipientes de cristal e inmediatamente llevadas al laboratorio para el análisis del contenido de N .

1.5 Muestras de hojarasca

Para la determinación de la tasa mensual de acumulación de hojarasca de cada uno de los pastos en las condiciones de pastoreo, se utilizó la técnica de muestreo propuesta por Medweeka - Kornos 1970 (citado por Crespo y Pérez, 2000), mientras que en los experimentos en parcela se utilizó la técnica recomendada por Thomas y Asakawa (1993).

Por su parte, para determinar la tasa de descomposición de la hojarasca se empleó la técnica de las bolsas de mallas según la metodología recomendada por Thomas y Asakawa (1993). Para realizar estos estudios se recolectó, al final de la estación seca, suficiente volumen de hojarasca de cada especie. Después de determinado el contenido de humedad de cada material de hojarasca, se prepararon suficiente cantidad de bolsas para depositar el equivalente a 20 g base seca en cada una de ellas. Mensualmente, durante un año, se tomaron 5 bolsas de cada tipo de hojarasca, se determinó el peso seco en estufa de cada una de ellas y, a partir de estos datos, se calculó la pérdida de peso seco de las mismas.

1.6 Muestreo de raíces

Para el muestreo de la biomasa radicular de los pastos se empleó la metodología descrita por Troughton (1957).

Las raíces recuperadas de cada cilindro fueron secadas al aire y después introducidas en una estufa de circulación de aire, graduada a $60^{\circ} \mathrm{C}$ hasta peso constante. Después de secadas en la estufa las muestras fueron molinadas con molino de martillo y enviadas al laboratorio para la determinación de materia seca residual y los contenidos de N, P y K.

1.7 Muestreo del agua de lluvia

Inmediatamente después de las precipitaciones ocurridas durante los meses de septiembre, octubre y noviembre de 2001 se recogió y midió el agua de lluvia caída en un pluviómetro situado en un pastizal del Instituto de Ciencia Animal. Se determinó el contenido de N del agua en las formas de amonio y de nitratos.

1.8 Análisis químico de las excreciones

El contenido de MS de las bostas se determinó después de colocarlas en una estufa calibrada a $60^{\circ} \mathrm{C}$ hasta peso constante.

Para la determinación de N se añadió 25 ml de $\mathrm{H}_{5} \mathrm{SO}_{4}$ a 1 g de muestra fresca. Después se añadieron 2 tabletas Kjeldahl y se puso a digerir. Este producto se envasó en un volumétrico de 250 ml y se enrasó con agua destilada. La muestra digerida se destiló, se tomaron 10 ml , a las que se le añadieron 10 ml NaOH al 50% y después se valoró con $\mathrm{H}_{2} \mathrm{SO}_{4} 0.1 \mathrm{~N}$.

Para la determinación de los minerales se expuso 1 g de muestra seca en mufla a $500^{\circ} \mathrm{C}$ durante 24 hr . La ceniza se mineralizó con HCl al 10% y se filtró a través de un papel de filtro. Este filtrado se enrasó con agua destilada en un volumétrico de 500 ml . De esta solución se tomaron alícuotas para determinar el P por colorimetría, el K por fotometría de llamas y el Ca y el Mg por valoración con EDTA.

Para la determinación de N en la orina se añadió $\mathrm{H}_{2} \mathrm{SO}_{4}$ a 2 ml de la misma y se digirió por el método de Kjeldahl, mientras que para el análisis de los minerales se digirieron 2 ml de orina con una mezcla nítrico - perclórico 2:1 y esta muestra digerida se diluyó en un volumétrico de 50 ml . El P se determinó en un colorímetro ADM - 300 de fabricación alemana, mientras que el K se leyó en un fotómetro de llama Flapo-4, también alemán.

Al agua se le determinó el $\mathrm{N}-\mathrm{NH}_{4}$ por el método colorimétrico de Nessler (Smell y Smell 1954) y el N-NO ${ }_{3}$ por colorimetría con ácido disulfónico (Jackson 1958).

1.9 Análisis químico del pasto

Para el análisis químico del pasto se tomaron 200 g de muestra fresca, las cuales fueron colocadas en una estufa a $60^{\circ} \mathrm{C}$ durante 72 hrs . Posteriormente las muestras secas se enviaron al laboratorio para la determinación del contenido de N y
minerales mediante las técnicas de la AOAC (1995), excepto el P, que se determinó según Amaral (1972).
1.10 Análisis químico de la hojarasca y cálculo de los nutrientes liberado por ella.

Las muestras de hojarasca fueron primeramente lavadas con agua destilada y des ionizada y puestas a secar en estufa a $60^{\circ} \mathrm{C}$ hasta peso constante. La muestra seca fue molinada a partículas $<1 \mathrm{~mm}$ y se le determinó los contenidos de $\mathrm{N}, \mathrm{P}, \mathrm{K}$, cenizas y lignina en basa seca. El N se determinó por Kjeldahl y colorimétricamente y el P por el método de azul de molibdato después de la digestión ácida. El K, se midió por espectrofotometría de absorción atómica, mientras que para la lignina se empleó el método de fibra ácido detergente (Van Soest y Wine 1968).

Para el cálculo de los nutrientes liberados por la hojarasca se multiplicó el peso de ella por el contenido de cada nutriente, para cada mes de muestreo. Luego, la diferencia entre el contenido de nutriente en el muestreo anterior y el contenido en el último muestreo, nos indicó la cantidad de nutriente liberado en dicho período de tiempo por la hojarasca.
1.11 Análisis químico del suelo

Después de secadas al aire, las muestras de suelo fueron tamizadas y pasadas por un tamiz con mallas de 0.5 mm . Después las muestras fueron enviadas al laboratorio y se determinó el contenido de N mediante las técnicas de la AOAC (1995), mientras que el P y K asimilables se determinó por el método de Oniani (Oniani, 1964). Por su parte, la materia orgánica se determinó por el método de Walkley y Black (citado por Jackson 1965) y el pH por el método potenciómetro.

1.12 Análisis estadísticos

Para los valores de la composición química de los excrementos se calcularon los estadígrafos: media aritmética, desviación estándar, rangos (valor mínimo y máximo) y el coeficiente de variación. Estos valores se resumieron para cada estación climática del año.

En general, para los experimentos que se desarrollaron en las condiciones de pastoreo, se utilizó un modelo lineal para el procesamiento de la información y se aplicó la dócima de Duncan (1955) en los casos necesarios.

Por su parte, para interpretar los resultados obtenidos en el estudio sobre el efecto de las bostas y la orina en el suelo, los valores se analizaron mediante un modelo lineal, considerando:
$Y \mathrm{ijk}=\mathrm{u}+\mathrm{Ti}+\mathrm{Mj}+{ }^{\mathrm{Tm}} \mathrm{ij}+\mathrm{cijk}$, donde:
$\mathrm{u}=$ media general
$\mathrm{Ti}=$ efecto de tratamiento $\mathrm{i}=1,2,3$ (orina, bostas, testigo)
$M j=$ efecto de tratamiento $j=1,2,3(60,120,180$ días después de depositadas)
${ }^{\mathrm{TM}} \mathrm{ij}=$ Efecto de la interacción (ij)
Cijk $=$ error aleatorio

Para determinar la curva de mejor ajuste entre la pérdida de amoníaco y los días transcurridos a partir de la deposición de la bosta y la micción en el campo, se compararon los modelos de Gompertz, Función de Gauss, Exponencial, Logístico y Logarítmico en Función Cuadrática.

Para la hojarasca acumulada por los pastos, así como los nutrientes liberados por ella, se determinaron los modelos estadísticos de mejor ajuste.
1.13 Indicadores comunes determinados en los experimentos 9 y 10 dedicados al estudio del reciclaje de nutrientes en sistemas de producción vacuna

Para el estudio del balance de los nutrientes en cada uno de los sistemas se determinaron los siguientes indicadores:

- Disponibilidad y rechazo del pasto en cada rotación
- Nutrientes extraídos por el pastizal
- Acumulación y tasa de descomposición de la hojarasca del pastizal, así como los nutrientes liberados por esta vía
- Bostas depositadas por los animales en el pastizal y nutrientes retornados con ellas
- Área del pastizal cubierta por las bostas
- Entrada de nutrientes por los alimentos suplementarios consumidos por los animales
- Nitrógeno que aportaron las lluvias
- Nutrientes extraídos por la ganancia de peso vivo de los animales

El pasto disponible y el rechazado se calcularon a partir del muestreo de 40 marcos de $0.25 \mathrm{~m}^{2}$ distribuidos al azar en el pastizal a la entrada y a la salida de los animales en cada rotación. En cada caso el pasto fue cortado con cuchillo a una altura de 10 cm del suelo, mientras que el CT-115 se cortó a una altura similar a la quedó en el rechazo de la rotación anterior. Se tomaron 10 muestras compuestas en cada rotación que fueron pesadas y secadas en estufa a $75^{\circ} \mathrm{C}$ hasta peso constante. Se determinó el contenido de MS, N, P y K según procedimientos descritos por Herrera y col. (1980).
Por su parte, para la determinación de la tasa de descomposición de la hojarasca y los nutrientes liberados por ella, se colocaron, en cada rotación, 20 bolsas de nylon (0.5 mm de mallas) con 5 g de hojarasca (base seca). Estas bolsas fueron situadas al azar en el pastizal y mensualmente se pesaron 2 de ellas, a las que se les determinó el peso seco y el contenido de N, P y K. A partir de las diferencias de peso seco y el contenido de nutrientes con respecto al contenido inicial, se calculó la tasa de descomposición y los nutrientes liberados.

En la época de seca se midió, además, el consumo de los alimentos suplementados a los animales: En base a esto y al contenido de nutrientes, se estimaron los nutrientes que entraron en cada sistema por esta vía.

Para determinar el N aportado por las lluvias se registró en un pluviómetro situado en el lugar la lluvia caída durante la etapa experimental. Después el total de lluvia acumulada
(en mm) se multiplicó por el valor 0.019, para estimar el aporte de N en $\mathrm{Kg} / \mathrm{ha}$ /año, como fue indicado anteriormente.

También se estimaron los nutrientes que salieron de cada sistema por concepto del peso vivo aumentado por los animales. Esto se calculó mediante la multiplicación de la ganancia de peso vivo acumulado y la composición de N, P y K de la canal, propuesto por Hensell y Ross (1973).
La extracción de los nutrientes del suelo se calculó al multiplicar el peso seco del pasto por su contenido de N, P y K en base seca, mientras que el consumo de nutrientes por el ganado a partir del pasto se estimó al multiplicar la extracción total del pasto por el factor 0.55 (porcentaje de utilización).

Por su parte, la cantidad de nutrientes removilizados por el pasto para formar nuevos tejidos durante el rebrote se estimó al multiplicar los nutrientes contenidos en el pasto rechazado por el factor 0.25 (Crespo, datos inéditos).
Se asumió que el N fijado simbióticamente por las leguminosas presentes en el ecosistema equivale al 40% del N contenido en su biomasa vegetal (Cadish y col. 1994).

Los nutrientes extraídos en los productos animales se calcularon indirectamente a partir de las ganancias del PV. Para ello se asumió un contenido de $2.45 \% \mathrm{~N}, 0.67 \% \mathrm{P}$ y $0.15 \% \mathrm{~K}$ en el cuerpo de los vacunos (Butler y Bailey, 1979). Para la salida de los nutrientes, por concepto de los terneros nacidos y por la producción de leche obtenida, se utilizaron los indicadores propuestos por estos autores.
Para la estimación de la entrada de nutrientes por los alimentos complementarios se utilizaron los datos de las tablas de composición de alimentos de Martín (1997).
El amoniaco volatilizado por bostas y orina de los animales se determinó según el procedimiento descrito por Crespo y col. (1997).
Los nutrientes excretados por las bostas y las micciones fueron calculados en base a la ecuación siguiente (Hirata y col. 1991):
Nutriente excretado $=$ Nutriente consumido - Nutriente retenido.
La producción anual de hojarasca fue estimada a partir del promedio de los muestreos realizados. Se consideró que entre el $40-50 \%$ del N, P y K contenido en la hojarasca del pastizal se mineralizó en el año y entró en el pool de nutrientes asimilable.

RESULTADOS Y DISCUSIÓN

CAPÍTULO II

COMPORTAMIENTO DE LAS EXCRECIONES DE LOS ANIMALES EN EL PASTIZAL

Introducción

El pastoreo de alta densidad conlleva el manejo racional e intensivo del ganado en el pastizal. Su intensidad trae consigo el empleo de elevado número de animales por unidad de área, en la que se deposita elevado volumen de bostas y micciones y, por consiguiente, ocurre mayor reciclaje de los nutrientes y materia orgánica en el área físicamente pastada.
Si se tiene en cuenta que la mayoría de las investigaciones publicadas sobre este tema, provienen de áreas templadas y subtropicales y, muchas veces, bajo condiciones controladas, el estudio de la distribución de las bostas por las vacas en los pastizales tropicales y el reciclaje de los nutrientes por las mismas, constituye un tema de mucho interés y actualidad (CIAT 1990; Sugimoto y col. 1991y Powell y col. 2010).

Las bostas y las micciones de los vacunos constituyen la vía principal de entrada de nutrientes en los pastizales, por lo que su rápida degradación ó descomposición, evitaría pérdidas por volatilización y lixiviación de los nutrientes contenidos en ellas, con lo cual podría lograrse mejor aprovechamiento para la nutrición de los pastos.
La velocidad de desaparición de las bostas ha sido, en general, un tema poco estudiado en las condiciones de clima tropical. En nuestro país Arteaga y col. (1991) y Crespo y col. (1995) encontraron que las bostas habían demorado entre 90 y 210 días para la total desaparición durante la estación seca del año. Sin embargo, se ha reconocido que la velocidad de desaparición varía en dependencia de diversos factores, tales como, la consistencia, la composición química, la diversidad de la biota presente, la estación climática y el sistema de pastoreo (MacDiarmid y Watkin 1972; Kishie Ishil 1978; Weeda y col. 1988 e Hirata y col. 1989).
La disposición de las bostas y las micciones en el pastizal produce efectos diferenciados en la dinámica de los nutrientes en el suelo, debido a la forma de descomposición de estas excreciones y a la manera en que se produce la liberación de
los nutrientes contenidos en ellas. Así, en las bostas, los elementos nutrientes se convierten gradualmente en formas asimilables en la medida en que su materia orgánica es atacada por los microorganismos para su descomposición, mientras que en las micciones, los nutrientes, especialmente el N y el K, se presentan en forma rápidamente asimilables para las plantas (Nennich y col. 2006).
Se ha demostrado que el P es principalmente devuelto por las bostas, en donde se presenta en forma lentamente asimilable para las plantas, mientras que en la orina este elemento se encuentra en cantidades insignificantes, con poco efecto en el suelo y en el pasto (Snaydon 1981; Clark y col. 2010).
Por su parte, Mc Diarmid y Watkin (1972á) señalaron un incremento significativo de los niveles de K-cambiable en el suelo cubierto por las bostas, mientras que Pfitzenmeyer ($1971^{\text {a }}$) había determinado que la orina incrementa la absorción de K por los pastos, cuyo efecto persistió hasta 3 años.

Desde hace mucho tiempo el reciclaje del N a través de las excreciones de los animales ha sido considerado de interés para mantener la fertilidad del suelo de los pastizales. Sin embargo, se ha revelado que ocurren pérdidas sustanciales de este elemento en las áreas donde se deposita la orina (Ball y Ryden 1984; Ball y Keeney 1981). Muchos de los estudios publicados acerca del sendero del N urinario, han indicado valores de volatilización que han variado en el rango de $6-70 \%$, en dependencia del tipo de suelo, clima y tipo de vegetación (Carran y col. 1982; Vallis y col. 1982 y Soarijarvi y col. 2006).

Por su parte, el flujo de N a través de la bosta es otro proceso de gran importancia en el reciclaje del N en los sistemas intensivos de pastoreo, pues de $1 / 3$ a $1 / 2$ del N excretado por los vacunos y los carneros ocurren por esta vía.
El objetivo del presente capítulo fue caracterizar y modelar la distribución espacial de las excreciones de vacas lecheras en el pastizal, la velocidad de desaparición de las mismas en las diferentes estaciones climáticas del año, su influencia en la disponibilidad y la composición química del pasto y el suelo, así como cuantificar el amoniaco que se volatiliza de las bostas y las micciones en diferentes fechas del año.

Experimento 1. Estudio de la distribución espacial de las bostas de vacas lecheras en el pastizal

Procedimiento experimental:
Se muestrearon 3 cuartones de $1250 \mathrm{~m}^{2}$ cada uno en cada estación climática del año, establecidos con el pasto estrella (Cynodon nlemfuensis vc. panameño). En cada rotación pastorearon como promedio 38 vacas, con 2 días de ocupación y 18 horas diarias de pastoreo.
A la salida de los animales en cada rotación toda el área del cuartón fue cuadriculada (50 cuadrículas de $25 \mathrm{~m}^{2}$ cada una) con soga y se realizó el conteo del número de bostas, así como el área ocupada por ellas.
El diámetro (promedio de 3 determinaciones por bosta) y el peso, fueron medidos en 15 bostas escogidas al azar en cada cuartón y a 5 de ellas se les determinó el porcentaje de materia seca y el contenido de N en base seca.

Para caracterizar la disponibilidad y la composición mineral del pasto ofrecido a las vacas en la siguiente rotación, se realizó el mapeo de las manchas de fertilidad del pastizal. Como de alta fertilidad (AF) fueron identificadas aquellas áreas donde resaltaba el color verde intenso y alta disponibilidad de pasto, mientras que las de media fertilidad (MF) correspondieron a las áreas donde resaltaba alta disponibilidad, pero de color verde menos intenso que en AF. Las áreas de baja fertilidad (BF) correspondieron al resto de las áreas no ocupadas por AF y MF.
Con marcos de $0.25 \mathrm{~m}^{2}$ se determinó la disponibilidad de pasto en 12 manchas representativas de AF, MF y BF.
Los métodos químicos utilizados para el análisis de las muestras de pastos, así como el análisis estadístico de los resultados, se indicaron en el Capítulo I.

Resultados y discusión

Las bostas depositadas tuvieron diámetros que oscilaron en un rango estrecho (23-26 cm), para un valor promedio de 25.8 cm (tabla 1). Cada vaca depositó un promedio de 10 bostas, con un peso seco de 0.29 Kg cada una.

Las vacas no mostraron lugares de preferencia dentro del cuartón para depositar las bostas, pues esta apareció de forma bastante regular en el pastizal. La ausencia de sombra dentro del cuartón favoreció dicha distribución y la puerta de acceso no influyó en este comportamiento. Otros investigadores como Hirata y col. (1988), CIAT (1990) y Weiss y Wyatt (2004), coincidieron en afirmar que, con una carga animal alta, la distribución de las excreciones tiende a ser más uniforme.

Tabla 1. Características de las bostas depositadas en el pastizal ${ }^{1}$

Estadígrafos	Diámetro, cm	Peso seco de la bosta, Kg	Bostas/vaca	Peso total de bostas/vaca, Kg
Media	25.85	0.29	10.00	2.90
$\mathrm{DE} \pm$	1.50	0.08	3.06	0.25
$\mathrm{CV}, \%$	5.82	27.36	38.54	25.50

${ }^{1}$ durante 18 hr de pastoreo
Se ha indicado que el área de influencia de una bosta individual en el comportamiento del pasto suele ser mayor que el área físicamente cubierta por ella (Crespo y González 1983; Hirata y col. 1988 y Rodríguez 2001). Si esto ocurre así, el área del pastizal beneficiada por las bostas pudiera ser sustancialmente mayor al 1.55% de área ocupada físicamente por ellas en una rotación en el presente estudio. Mc Diarmid y Watkin (1971) habian señalado que el área de influencia de las excreciones sobre el pastizal fue 4.13 veces mayor que su área física.
Resultó curioso que algunas de las características de las bostas que aquí se estudiaron, tales como el diámetro, el peso unitario, el contenido de materia seca y la cantidad de bostas depositadas por cada vaca, concuerdan bastante bien con los valores encontrados por otros autores, tales como Suárez y col. (1981), Crespo y González (1983), Arteaga y col. (1988) y Oenema, Oudenday y Velthof (2007). Esto sugiere que tales valores pueden ser tomados en consideración en futuras investigaciones, sin necesidad de determinarlas nuevamente.

Los análisis realizados a las bostas indicaron que el contenido medio de N fue de 1.52\% (b. seca) y el contenido de MS promedió 15.9\% (tabla 2).

De estas observaciones se estimó que, como promedio, cada vaca depositó 1 bosta de 1.72 Kg (b. fresca) cada 1.5 hrs de pastoreo, o lo que es lo mismo, un promedio de 13 bostas con un peso total de 20.6 Kg durante 18 hrs de pastoreo. Esto indica que las 40 vacas que pastorearon en el cuartón defecaron en total 840 bostas, que pesaron 1.64 t en los 2 días de estancia de cada rotación.

Tabla 2. Contenido de N y MS de las bostas

Estadígrafos	$\mathrm{N}, \%$	MS, \%
Media	1.52	15.94
DE \pm	0.15	1.00
CV, \%	9.92	6.29

Por su parte, las manchas de fertilidad AF y MF del pasto, ocuparon pequeñas áreas en el pastizal, con valores de 3.2 y 3.6%, respectivamente. El peso del pasto por m^{2} fue significativamente mayor en las manchas AF y MF en comparación con BF (tabla 3), pero solo representaron el 17% de la disponibilidad total del cuartón.

Tabla 3. Disponibilidad de pasto en las manchas de fertilidad en el pastizal

Manchas de fertilidad	$\mathrm{g} \mathrm{MS} / \mathrm{m}^{2}$	$\mathrm{Kg} \mathrm{MS/cuartón}$	\% del total
AF	450.43^{a}	18.02^{b}	8.84
MF	353.33^{b}	15.90^{b}	7.80
BF	147.46^{c}	169.95^{a}	83.36
Total		203.87	100.00
ES \pm	$121^{\text {m"n }}$	$1.2^{\text {m" }}$	$1.2^{\text {m* }}$

${ }^{\text {a,b,c }}$ Medias con superíndice distinto por columna difieren significativamente a $\mathrm{P}<0.05$ (Duncan 1955)

Se encontraron marcadas variaciones en la composición mineral del pasto que creció en las diferentes manchas de fertilidad (tabla 4). Lo que más resaltó fue el elevado contenido de PB y K en el pasto AF.
La mayor concentración de N y K del pasto, así como el mayor rendimiento de MS en las denominadas "manchas de alta fertilidad AF" comparado con las de "baja fertilidad BF" indican, sin dudas, la influencia de las bostas y las micciones en dichas áreas. No obstante, los mayores valores de N y K, así como el menor valor de P en el pasto de las áreas $A F$, en comparación con MF, permitieron deducir que las primeras fueron producidas por las micciones y las segundas por las bostas, lo cual fue también sugerido por Chung y Lotero (1977).
Tabla 4. Composición mineral del pasto en las manchas de fertilidad (\% b. seca)

Manchas de fertilidad	MS	N	PB	P	K	Ca	Mg
AF	$25.4{ }^{\text {c }}$	$1.77^{\text {a }}$	$11.1^{\text {a }}$	$0.18^{\text {b }}$	$1.99{ }^{\text {a }}$	0.73	0.35
MF	$27.7^{\text {b }}$	$1.12^{\text {b }}$	$7.0^{\text {b }}$	$0.21{ }^{\text {b }}$	$0.65{ }^{\text {b }}$	0.69	0.36
BF	$31.3^{\text {a }}$	$1.17{ }^{\text {b }}$	$7.3^{\text {b }}$	$0.28{ }^{\text {a }}$	$0.43{ }^{\text {b }}$	0.67	0.33
ES \pm	$0.66{ }^{* *}$	0.15	$0.8{ }^{* *}$	0.02	$0.24 *$	0.03	0.02

${ }^{\text {a,b,c }}$ Medias con superíndice distinto por columna difieren significativamente a $\mathrm{P}<0.05$ (Duncan 1955)

Aunque el pasto en las áreas AF y MF presentó mayor rendimiento que en las áreas BF, sus disponibilidades apenas representaron el 17% de la disponibilidad total del pastizal, lo cual indicó que las bostas y las micciones distribuidas en el pastizal no influyen en más de un 80% de la disponibilidad en cada rotación.

Por su parte, la distribución de las bostas en el pastizal mostró un elevado ajuste a la expresión:

$$
R(x)=\frac{\mathscr{\varnothing}}{n!} e^{-x}
$$

donde:
$x=$ frecuencia de bostas presentes en un cuadrante de $25 \mathrm{~m}^{2}$.
e = base del logaritmo natural
$\mathrm{n}!=$ factor de n

Ǿ = número promedio de bostas por cuadrícula
Esto significa que, el número promedio de bostas que defecaron las vacas en cada rotación se puede estimar, con una precisión de 94.2%, al muestrear 27 cuadrantes de $25 \mathrm{~m}^{2}$ en cada cuartón. El modelo que se ajustó permitió estimar que se depositan 0.21 bostas $/ \mathrm{m}^{2}$ en cada rotación.

Los resultados aquí presentados se obtuvieron en un pastizal con monocultivo de gramínea (C. nlemfuensis vc. Panameño), pero sabemos que la presencia de árboles en el pastizal, tal como ocurre en los sistemas silvopastoriles, el comportamiento puede variar sustancialmente. Así, los estudios de Rodríguez y col. (2003) concluyeron que, en el pastizal sin sombra, las vacas no tuvieron preferencia por determinados lugares dentro del potrero, pero en presencia de árboles, la deposición de las excreciones fue mayor en el área sombreada durante la estación lluviosa del año, lo cual lo relacionaron con la preferencia de los animales a descansar en los lugares sombreados en dicha época.

Para lograr una mejor distribución de las excreciones en el pastizal y un reciclado más eficiente de los nutrientes, Ruiz y Febles (1999) recomendaron la distribución de arbustos de Leucaena leucocephala en el 100\% del área.

Además de la presencia de los árboles en los pastizales, la ubicación del agua de bebida y de otros suplementos dentro del potrero, también pueden influir en la distribución de las excreciones (Aarons, 2001).

Experimento 2. Estudio de la tasa de descomposición de las bostas en el pastizal Procedimiento experimental:

Las bostas se recolectaron manualmente de las naves de una vaquería con ganado Holstein lechero en el momento de la deyección y se colocaron en el pastizal recién cortado, con un peso aproximado de 1.35 Kg (base fresca) y 28 cm de diámetro cada una, simulando la deposición real que hacen los animales. Para ello, en cada mes del año se depositaron 40 bostas idénticas y mensualmente se les determinó el \% de MS a 4 de ellas, para determinarles la variación del peso seco.
La determinación del \% de MS, el cálculo de la tasa de desaparición, la correlación con los factores climáticos y los modelos de regresión seleccionados, fue indicada en el Capítulo I.

Resultados y discusión

Estación lluviosa

En todos los meses los datos de la tasa de desaparición tuvieron mejor ajuste al modelo de regresión cuadrática.
En el primer trimestre de la estación lluviosa, las bostas que se depositaron en junio y julio desaparecieron totalmente a los 150 días, mientras que las que se depositaron en mayo, demoraron más de 150 días (figura 1). Esto significa que en los primeros 60 días, las bostas depositadas en mayo solo perdieron el 10% del peso inicial, mientras que en similar tiempo, las de junio y julio perdieron el 38 y el 60%, respectivamente.

Días
Figura 1. Curva de desaparición de la bosta depositada en el primer trimestre de la época de lluvias

En el segundo trimestre de esta estación (figura 2) las bostas alcanzaron su total desintegración a los 120, 150 y 210 días en los meses de agosto, septiembre y octubre, respectivamente. En los primeros 60 días las bostas que se depositaron en octubre perdieron el 32% de su peso inicial, mientras que, en similar tiempo, las de agosto y septiembre perdieron el 61%.

Días
Figura 2. Curva de desaparición de la bosta depositada en el segundo trimestre de la época de lluvias

Las correlaciones entre la velocidad de desintegración de las bostas y los factores climáticos temperatura y lluvia caída, mostraron coeficientes entre 0.98 y 0.99 (tabla 5), con niveles de significación de $\mathrm{P}<0.001$ y $\mathrm{P}<0.05$, con excepción de las que fueron colocadas en agosto, que no fue significativo.
Tabla 5. Relación entre la velocidad de desaparición de las bostas y los factores climáticos temperatura y lluvia caída

Mes	Coeficiente de correlación ®	Significación
Mayo	0.98	*
Junio	0.99	*
Julio	0.99	*
Agosto	0.99	NS
Septiembre	0.98	*
Octubre	0.98	***

Las tasas de desaparición (tabla 6) variaron en los diferentes meses, con valores más altos en junio, julio, agosto y septiembre.

Tabla 6. Tasas de desaparición de las bostas (g MS/mes) en la estación lluviosa

Días después de depositadas	Mes de deposición					
	Mayo	Junio	Julio	Agosto	Septiembre	Octubre
30	21.44	32.21	58.13	79.00	80.59	30.11
60	48.84	74.12	99.52	121.26	126.94	53.78
90	82.20	125.73	124.17	126.78	139.05	71.01
120	121.52	187.04	132.08		116.94	81.80
150	166.80					86.15
180						84.06
210						75.53

Los mayores valores de las tasas de desaparición en los primeros 30 días en las bostas que se depositaron en junio, julio, agosto y septiembre, comparadas con las depositadas en mayo y octubre, se correspondieron con los meses de más lluvia y mayor temperatura. El efecto erosivo de las lluvias durante los primeros días de deposición de las bostas acelera notablemente su proceso de descomposición (Weeda 1967; Hirata y col. 1988) y se crean condiciones favorables para una mayor actividad de la biota del suelo sobre las bostas (Marsh y Campling 1970; Curry 1987).

Estación seca

Similar a lo que ocurrió en la estación lluviosa, en todos los meses de deposición en la estación seca, los valores de tasa de desaparición presentaron mejor ajuste al modelo de regresión cuadrática.
En las figuras 3 y 4 se muestran las curvas de desaparición de las bostas que se depositaron en los diferentes meses de esta estación. En noviembre, diciembre y enero las bostas mostraron un lento proceso de desaparición, pues a los 60 días solamente perdieron alrededor del 20% del peso inicial. También las que fueron depositadas en febrero, marzo y abril presentaron una lenta desaparición, pues a los 60 días las de
marzo solo habían perdido el 9\% del peso inicial y las de febrero y abril perdieron, en similar tiempo, el 38 al 39\%.
\% de desaparición

Días
Figura 3. Curva de desaparición de la bosta en el primer trimestre de la época de seca

Figura 4. Curva de desaparición de la bosta en el segundo trimestre de la estación de seca.
Las correlaciones entre las variaciones del peso seco de las bostas, la temperatura y la lluvia caída, mostraron coeficientes entre 0.98 y 0.99 (tabla 7), con niveles de significación de P < 0.05 y P < 0.001, con excepción de las colocadas en marzo, que no fue significativo.

Tabla 7. Coeficientes de correlación entre la velocidad de desaparición de las bostas y los factores temperatura y lluvia caída en la estación seca

Mes	Coeficiente de correlación	Significación
Noviembre	0.99	${ }^{* * *}$
Diciembre	0.99	${ }^{* *}$
Enero	0.98	${ }^{*}$
Febrero	0.99	$*$
Marzo	NS	$*$
Abril	0.99	*
P $<0.05{ }^{ *} \mathrm{P}<0.01 \quad{ }^{* * *} \mathrm{P}<0.001$	$\mathrm{NS}=$ no significativo	

La tasa de desaparición (tabla 8) durante los primeros 30 días fue más baja en noviembre, diciembre y enero, con valores menores a $4 \mathrm{~g} \mathrm{MS} / \mathrm{mes}$. En los restantes meses las bostas perdieron más de $10 \mathrm{~g} / \mathrm{mes}$ en similar lapso de tiempo.

Tabla 8. Tasa de desaparición de las bostas en la estación seca (g MS/mes)

Días después de depositadas	Meses de deposición						
	Noviembre	Diciembre	Enero	Febrero	Marzo	Abril	
30	1.50	2.12	3.64	15.30	13.08	24.25	
60	1.68	10.90	13.06	26.62	6.52	51.00	
90	9.54	26.34	28.26	49.08	19.68	80.25	
120	22.08	48.44	49.24	77.64	65.52	112.00	
150	39.30	77.20	76.00	112.30	131.00	146.25	
180	61.20	112.62	108.54	156.06	216.12	183.00	
210	87.78						

La velocidad de descomposición de las bostas durante la estación seca fue más lenta que la encontrada para la estación lluviosa, por lo que la incorporación de los nutrientes reciclados por esta vía debe ser menor. Mientras que las bostas depositadas en los meses de la estación lluviosa perdieron entre el 20-70\% del peso inicial en los primeros 60 días, en la época de seca solo perdieron entre $5-30 \%$ a los 90 días. Esto ocurre así, fundamentalmente, por el encostramiento que experimentan las bostas en dicha época debida, principalmente, por la falta de humedad. Según Underhay y Dickinson (1979) éstas raramente son rehumedecidas por el agua de lluvia, lo cual demora la velocidad de desaparición.

Para estimar la tasa de desaparición de las bostas se han informado diferentes modelos de regresión, entre ellos el logarítmico (Hirata y col. 1985) y el lineal (Crespo y col. 1995). Sin embargo, nuestros resultados encontraron mejor ajuste al Modelo cuadrático.

Según Desiree (1974) (citado por Lobo y Veiga 1990) la velocidad de desaparición de las bostas depende esencialmente de cuatro factores, como son: cobertura vegetal, estructura del suelo subyacente, forma y espesor de las bostas después de su deposición y factores climáticos (temperatura y lluvia). Para este autor, estos últimos factores son los más importantes y reconoce que la temperatura es el factor que mayor influencia ejerce en la desecación de las bostas, que las hacen más resistentes a la descomposición.
La mayor velocidad de descomposición de las bostas en la época de lluvias, indica que la incorporación de los nutrientes al suelo a partir de ellas, ocurre de forma más rápida y, por tanto, su efecto en el pasto es más eficiente que en la época de seca. Esto indica que los grandes volúmenes de excreciones que se acumulan en las naves de sombra de las vaquerías deben aplicarse en las áreas de pastoreo o de forraje durante esta época del año, lo cual hará más eficiente la incorporación de los nutrientes que ellas contienen al suelo.

Por último, las bostas que se depositan durante la estación seca, presentan un tiempo de descomposición más prolongado, pues durante esa época los factores climáticos tienen muy poca influencia en el proceso de descomposición, por lo que para lograr una estabilidad en el aporte de nutrientes en el ecosistema, se deben buscar otras vías más eficientes de reciclar los nutrientes durante esta época, tales como el compostaje, la lumbricultura, los abonos órgano-minerales, etc.

Experimento 3. Efecto de las bostas y la orina en el pasto y en el suelo
Procedimiento experimental:

Para el análisis de las bostas se muestrearon 50 de ellas en un pastizal de pasto estrella (Cynodon nlemfuensis vc. panameño), en un sistema de pastoreo rotacional con alta carga instantánea de 288 UGM/ha/día y cuartones de $1250 \mathrm{~m}^{2}$ cada uno. Las bostas fueron recolectadas en bolsas de polietileno al día siguiente de la salida de las vacas del cuartón. Inmediatamente fueron trasladadas al laboratorio, en donde se tomaron muestras representativas de cada una para determinar el porcentaje de MS y

Ios contenidos de N, P, K, Ca y Mg. Las técnicas utilizadas en el laboratorio para la determinación de N y minerales de las bostas fueron indicadas en el Capítulo I.
Por su parte, para el análisis de las micciones se colectaron 36 muestras de orina de las vacas mediante la introducción de un catéter en horas de la mañana (6:00-6:30 a.m). El tiempo de colección comprendió los períodos de febrero a abril. Las muestras frescas fueron colocadas en recipientes de cristal e inmediatamente llevadas al laboratorio para el análisis. Todos los valores se expresan en mg por 100 ml . En el Capitulo I se indicaron las técnicas para la determinación de N y minerales en estas muestras.
Para el estudio del efecto de las bostas y las micciones en el pasto y en el suelo se procedió de la siguiente forma:
Sobre un césped de Cynodon nlemfuensis vc. panameño recién cortado se depositaron en enero, marzo y julio 5 bostas y 3 micciones recién excretadas por las vacas. Se determinó el rendimiento del pasto en tres distancias desde el centro de cada bosta (0 a 12.5 ; 12.5 a 25.0 y 25.0 a 37.5 cm) y a dos distancias desde el centro de la orina ($0-20$ y $20-40 \mathrm{~cm})$. Se determinó, además, el rendimiento del pasto en 3 áreas no afectadas por bosta ni orina (testigos).
Cada bosta depositada pesó 1.35 Kg (b. fresca) y ocupó un área de $590.93 \mathrm{~cm}^{2}$, mientras que el volumen de cada micción fue de 3 litros y cubrió un área de 1256.64 cm^{2}. Se situaron, desde el momento de la deposición, aros metálicos concéntricos a las distancias mencionadas anteriormente.

Los cortes para la determinación del rendimiento y el contenido de N, P y K del pasto se hicieron de forma manual a 5 cm de altura desde el suelo.
Por otra parte, en el momento de cada corte también se muestreó el suelo (Ferralítico rojo lixiviado nodular ferruginoso, Hernández y col. 2005) a 0 - 15 cm de profundidad en cada tratamiento.
Las técnicas de determinación de la composición química del pasto y del suelo se indicaron en el Capítulo I.
El análisis estadístico utilizado para los datos de la composición química de ambos tipos de excreciones, así como para interpretar los resultados obtenidos en el estudio sobre el efecto de las bostas y la orina en el suelo, se indicó en el Capítulo I.

En el experimento del efecto de la bosta y la orina en el rendimiento y la composición química del pasto, se consideró que cada una de las 5 bostas y cada una de las 3 micciones depositadas mensualmente constituía una repetición, en un modelo de bloques completamente al azar y en la cual cada anillo concéntrico constituyó un tratamiento.

Resultados y discusión

Composición química de las bostas

En la tabla 9 se presentan los valores encontrados en las bostas durante las estaciones seca y lluviosa del año. De manera general, los contenidos de nutrientes varían con la época del año y la mayoría, excepto el Ca, presentan mayores valores en la estación lluviosa.

Así, el contenido de N fue 29.5\% mayor en las bostas que se depositaron en la estación lluviosa y los estadígrafos de dispersión indican que en esta época las muestras presentaron valores más próximos a la media. Similar comportamiento presentaron el P y el Mg.

Por su parte, la concentración de K fue 57% mayor en la estación lluviosa, con un rango mucho más amplio y notablemente más disperso, comparado con la estación seca.

Sin embargo, el contenido de Ca y el porcentaje de MS fueron inferiores en la estación lluviosa.

Los valores de N, P y K encontrados en las bostas coinciden aproximadamente con los de la literatura revisada (Crespo y Arteaga 1986; Arteaga y col. 1988, van Fassen y Van Dijk 1987 y Lupwayi, Gruma y Haque 2000). No obstante, los contenidos de Ca y Mg son particularmente más altos, aún al compararlos con los análisis realizados por Tsuji y Haramahi (1976), quienes coinciden con los valores para el Mg , pero no para el Ca. Los resultados indicaron que las bostas que se depositaron por las vacas en la estación seca, fueron relativamente pobres en agua y nutrientes, al compararlo con lo encontrado en la estación lluviosa. Es posible que el encostramiento o momificación que mostraron las bostas en esta época del año sea la causa fundamental de dicho fenómeno. Por su parte, el contenido de Ca de las bostas en la estación seca fue más bajo en la estación lluviosa, aunque la desviación estándad de los datos presentó un valor muy alto.

Tabla 9. Composición química de las bostas (\% base seca)

Estadígrafos	Estación	N	P	K	Ca	Mg	MS
Medias	Seca	1.93	0.28	0.58	2.46	0.78	19.05
	2.50	0.32	0.91	2.18	0.94	16.07	
	Seca	0.51	0.09	0.17	0.71	0.32	4.46
Estándar \pm	Lluviosa	0.50	0.10	0.37	0.46	0.23	3.34
Valor máximo	Seca	3.24	0.43	0.97	4.10	1.32	29.00
	Lluviosa	3.55	0.50	1.80	3.07	1.57	27.00
Valor mínimo	Seca	1.48	0.18	0.30	1.50	0.33	11.80
	Lluviosa	1.33	0.18	0.36	1.00	0.49	11.50
Coeficiente de Variación, \%	Seca	26.34	33.70	28.69	29.02	40.26	23.43
	Lluviosa	20.03	31.74	40.46	21.16	24.58	20.72

Composición química de la orina

En la tabla 10 se aprecia la alta concentración de K encontrada en la orina, cuyo valor fue 1.7 veces mayor que el N . Por su parte, el contenido de P se presentó en una concentración muy baja.
Tabla 10. Composición de N, P y K de la orina (mg/100 ml)

Nutriente		
N	P	K
480	10	800

También los contenidos de N, P y K encontrados en la orina se corresponden de manera bastante aproximada a lo encontrado en la literatura, tanto en los valores de
sus concentraciones (Hutton y col. 1967; Sugimoto et al 1987c) como en las proporciones entre los mismos (Petersen y col. 1956; Nennich y col. 2006).
Efecto en el rendimiento del pasto
El efecto de las bostas en el rendimiento del pasto se indica en la tabla 11. Las que se depositaron en enero influyeron positivamente a los 60 días después de aplicada, pero a los 120 días su efecto no se manifestó, mientras que las depositadas en marzo incrementaron el rendimiento a los 60 y 120 días, pero no a los 180 días.
El efecto de la bosta en el rendimiento se manifestó hasta 15 cm por fuera del borde de la misma y, en ocasiones, esto también ocurrió hasta los 30 cm . El mayor efecto se encontró cuando la bosta se depositó en julio (599.82 vs. $256.39 \mathrm{~g} / \mathrm{m}^{2}$).

Tabla 11. Efecto de las bostas depositadas en diferentes meses del año en el rendimiento de materia seca del pasto ($\mathrm{g} / \mathrm{m}^{2}$)

Anillos, cm						
Mes de deposición	ddd ${ }^{(1)}$	Central	$0-15$ del borde	$15-30$ del borde	Testigo	ES \pm
Enero	$\begin{gathered} \hline 60 \\ 120 \end{gathered}$	$\begin{aligned} & \hline 168.72^{\mathrm{C}} \\ & 231.24 \end{aligned}$	$\begin{aligned} & \hline 317.06^{a} \\ & 223.60 \end{aligned}$	$\begin{gathered} 228.72^{b} \\ 169.36 \end{gathered}$	$\begin{gathered} 154.18^{c} \\ 169.26 \end{gathered}$	$\begin{gathered} 18.71^{* * *} \\ 24.98 \end{gathered}$
	60	$217.56^{\text {a }}$	$216.58{ }^{\text {a }}$	$187.10^{\text {b }}$	$187.42^{\text {b }}$	8.63*
Marzo	$\begin{aligned} & 120 \\ & 180 \end{aligned}$	$\begin{aligned} & 90.92^{\mathrm{a}} \\ & 141.22 \end{aligned}$	$\begin{aligned} & 70.86^{b} \\ & 119.38 \end{aligned}$	$\begin{aligned} & 64.74^{\text {b }} \\ & 109.35 \end{aligned}$	$\begin{aligned} & 66.92^{b} \\ & 107.10 \end{aligned}$	$\begin{gathered} 2.79^{* * *} \\ 11.34 \end{gathered}$
Julio	60	$599.82^{\text {a }}$	$475.76{ }^{\text {ab }}$	$350.07{ }^{\text {bc }}$	$256.39^{\text {c }}$	42.31***

* $P<0.05 \quad{ }^{* * *} P<0.001{ }^{\text {a,b,c }}$ Medias con letra diferente en cada fila difieren a $\mathrm{P}<0.05$ (Duncan 1955). ddd = días después de depositadas.

Por otra parte, el efecto de la orina en el rendimiento del pasto fue positivo en todos los meses de deposición y en todas las fechas de muestreo (tabla 12). Las depositadas en enero y en marzo aumentaron el rendimiento aún 100 días después de aplicadas. El
efecto más marcado se produjo en julio y en ningún caso su influencia se manifestó más allá del área física inicialmente cubierta por ella.

Tabla 12. Efecto de la orina depositada en diferentes meses del año en el rendimiento de MS del pasto ($\mathrm{g} / \mathrm{m}^{2}$)

Anillos, cm						
Mes de deposición	ddd $^{(1)}$	Central	$0-15$ del borde	Testigo	ES \pm	
Enero	60	414.28^{a}	244.68^{b}	155.82^{b}	53.95^{*}	
	120	796.52^{a}	385.95^{b}	307.35^{b}	$54.50^{* *}$	
	448.10^{a}	393.48^{a}	291.40^{b}	25.80^{*}		
	60	429.44^{a}	259.28^{b}	253.88^{b}	$21.87^{* * *}$	
Marzo	120	340.04^{a}	130.04^{b}	70.74^{b}	$41.63^{* *}$	
	180	426.74^{a}	191.52^{b}	119.74^{b}	$37.18^{* *}$	
Julio	60	786.92^{a}	383.88^{b}	279.58^{b}	92.65^{*}	

${ }^{*} \mathrm{P}<0.05 \quad{ }^{* *} \mathrm{P}<0.01 \quad{ }^{* * *} \mathrm{P}<0.001^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$ Medias con letra diferente en cada fila difieren a $\mathrm{P}<0.05$ (Duncan 1955). ${ }^{(1)}$ ddd = días después de depositadas.

Efecto en la composición química del pasto
Las bostas no ejercieron ningún efecto en los contenidos de N y P del pasto (tabla 13), mientras que el contenido de K (tabla 14) se incrementó a los 60 y a los 120 días de depositarse la bosta en enero y a los 60 días en marzo. Estos efectos se manifestaron hasta los 15 cm del borde de la bosta.

Tabla 13. Efecto de la bosta depositada en diferentes meses del año en los contenidos de N y P del pasto

Anillos, cm						
Mes de deposición	Ddd ${ }^{(1)}$	Central	$\begin{gathered} 0-15 \mathrm{del} \\ \text { borde } \end{gathered}$	$\begin{gathered} 15-30 \\ \text { del borde } \end{gathered}$	Testigo	ES \pm
\% de N						
	60	1.66	1.58	1.56	1.49	0.04
Enero	120	1.42	1.41	1.34	1.26	0.04
	60	2.22	2.11	2.21	2.04	0.04
Marzo	120	2.15	2.03	2.06	2.10	0.03
Julio	60	2.28	2.43	2.05	2.05	0.12
\% de P						
	60	0.34	0.36	0.36	0.36	0.02
Enero	120	0.48	0.45	0.61	0.46	0.07
	60	0.50	0.41	0.44	0.44	0.05
Marzo	120	0.46	0.41	0.43	0.42	0.03
Julio	60	0.66	0.66	0.68	0.60	0.08

Por su parte, el contenido de Mg del pasto no fue afectado por la bosta (tabla 15), mientras que el contenido de Ca solo se incrementó a los 120 días de haberse depositado la misma en enero.

Tabla 14. Efecto de la bosta depositada en diferentes meses del año en el contenido de K del pasto

Anillos, cm						
Mes de deposición	Ddd ${ }^{(1)}$	Central	$\begin{aligned} & 0-15 \mathrm{del} \\ & \text { borde } \end{aligned}$	$15-30$ del borde	Testigo	ES \pm
\% de K						
	60	$0.83{ }^{\text {a }}$	$0.66{ }^{\text {a }}$	$0.65{ }^{\text {a }}$	$0.41^{\text {b }}$	0.06*
Enero	120	$0.96{ }^{\text {a }}$	$0.80^{\text {a }}$	$0.66{ }^{\text {c }}$	$0.61{ }^{\text {c }}$	$0.02^{* * *}$
	60	$0.91{ }^{\text {a }}$	$0.72{ }^{\text {b }}$	$0.60{ }^{\text {b }}$	$0.47^{\text {c }}$	0.04***
Marzo	120	1.04	0.48	0.89	0.80	0.20
Julio	60	1.55	1.10	0.90	0.93	0.75
${ }^{*} \mathrm{P}<0.05 \quad{ }^{* *} \mathrm{P}<0.01 \quad{ }^{* * *} \mathrm{P}<0.001{ }^{\mathrm{a}, \mathrm{b,c}}$ Medias con letra diferente en cada fila difieren a $\mathrm{P}<0.05$ (Duncan 1955). ${ }^{(1)}$ ddd = días después de depositadas.						

Tabla 15. Efecto de la bosta depositada en diferentes meses del año en los contenidos de Ca , y Mg del pasto

Anillos, cm							
Mes de deposición	ddd $^{(1)}$	Central	$0-15$ del borde	$15-30$ del borde	Testigo	ES \pm	
\% de Ca							
Enero	120	0.93^{a}	0.98^{a}	0.95^{a}	0.57^{b}	0.07^{*}	
Marzo	60	0.93	0.98	0.97	1.17	0.09	
	60	0.91	0.94	0.87	1.01	0.03	

\% de Mg						
Enero	60	0.47	0.46	0.45	0.46	0.02
	120	0.46	0.50	0.45	0.43	0.08
Marzo	60	0.57	0.54	0.53	0.54	0.05
	120	0.48	0.47	0.44	0.38	0.03
	60	0.43	0.48	0.56	0.45	0.04

* $\mathrm{P}<0.05^{\mathrm{a}, \mathrm{b,c}}$ Medias con letra diferente en cada fila difieren a $\mathrm{P}<0.05$ (Duncan 1955). ${ }^{(1)}$ ddd = días después de depositadas.

Por otra parte, el efecto de la orina en el contenido de N y de K del pasto se muestra en la tabla 16. Se observa que el N fue mayor en el pasto que creció sobre la orina en los muestreos efectuados 60 días después de depositadas en enero, marzo y julio, mientras que, la micción incrementó el contenido de K del pasto en todos los muestreos y, en muchos casos, la influencia se manifestó más allá del borde físicamente ocupada por ella.

Tabla 16. Efecto de la orina depositada en diferentes meses del año en el contenido de N y K del pasto

Anillos, cm					
Mes de deposición	ddd ${ }^{(1)}$	Central	$\begin{gathered} 0-15 \mathrm{del} \\ \text { borde } \end{gathered}$	Testigo	ES \pm
\% de N					
	60	$2.40{ }^{\text {a }}$	$2.02{ }^{\text {a }}$	$1.47{ }^{\text {b }}$	0.11*
Enero	120	1.47	1.39	1.25	0.12
	60	$4.08{ }^{\text {a }}$	$3.21{ }^{\text {b }}$	$2.06{ }^{\text {c }}$	0.24*
Marzo	120	3.22	2.97	2.99	0.09*
Julio	60	$3.14{ }^{\text {a }}$	$2.48{ }^{\text {b }}$	$2.01{ }^{\text {b }}$	0.13*
\% de K					
	60	$1.33{ }^{\text {a }}$	$0.85{ }^{\text {b }}$	$0.41^{\text {c }}$	0.10*
Enero	120	$1.27^{\text {a }}$	$0.73{ }^{\text {b }}$	$0.61{ }^{\text {c }}$	0.09

(Duncan 1955). ${ }^{(1)}$ ddd = días después de depositadas.
El efecto de la orina en el rendimiento del pasto no solamente fue más evidente sino también más duradero que el producido por la bosta. Este hecho parece confirmar los criterios formulados por Mc Luscky (1960, citado por Marsh y Campling 1970) y las observaciones relativas a la duración del efecto de la orina en pastizales tropicales realizados por Petersen y col. (2007). Por otra parte, la bosta tuvo un efecto más limitado en el tiempo, principalmente en los meses de la estación seca. Así, en esta etapa del año, el efecto de la deposición dejó de ser significativo a partir de los $60-120$ días, y de los $0-15 \mathrm{~cm}$ del borde. Solamente en julio, mes típico de la estación lluviosa, este efecto llegó a ser significativo más allá de los 15 cm , aunque su duración en el tiempo no fue posible medir.
Efecto en la composición química del suelo
El efecto de las bostas y la orina en los contenidos de $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ y $\mathrm{K}_{2} \mathrm{O}$ del suelo se indica en la tabla 17. El N se incrementó significativamente por ambos tipos de excreciones cuando la deposición se realizó en julio, mientras que en todos los casos el contenido de K fue mayor en el suelo cubierto por la orina y el P no fue influenciado por ninguna de las excreciones.

Tabla 17. Efecto de las bostas y la orina en los contenidos de $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ y $\mathrm{K}_{2} \mathrm{O}$ del suelo

Nutrientes	Tratamientos	Mes de deposición		
		Julio	Enero	Marzo
N, \%	Bostas	$0.42^{\text {ab }}$	0.40	0.43
	Orina	$0.44{ }^{\text {b }}$	0.44	0.46
	Testigo	$0.37^{\text {c }}$	0.42	0.41
	ES \pm	0.001***	0.02	0.01
$\begin{gathered} \mathrm{P}_{2} \mathrm{O}_{5} \\ (\mathrm{mg} / 100 \mathrm{~g}) \end{gathered}$	Bostas	26.55	33.77	40.90
	Orina	27.70	38.52	44.40
	Testigo	26.10	36.50	39.62
	ES \pm	1.07	1.07	1.72
$\begin{gathered} \mathrm{K}_{2} \mathrm{O} \\ (\mathrm{mg} / 100 \mathrm{~g}) \end{gathered}$	Bostas	$10.57^{\text {b }}$	$0.37{ }^{\text {b }}$	$11.25{ }^{\text {b }}$
	Orina	$48.50^{\text {a }}$	$0.38{ }^{\text {a }}$	$15.60^{\text {a }}$
	Testigo	$12.00^{\text {c }}$	$0.36{ }^{\text {b }}$	$12.17^{\text {b }}$
	ES \pm	0.70***	0.01***	1.06***

El pH y el Ca no variaron entre los tratamientos, pero el Mg y la MO (tabla 18) aumentaron en las deposiciones de julio y marzo, respectivamente.

Tabla 18. Efecto de las bostas y la orina en el Mg y la M.O del suelo

Nutrientes	Tratamientos	Mes de deposición		
		Julio	Enero	Marzo
$\begin{gathered} \mathrm{Mg}, \\ \mathrm{Cmol}(+) / \mathrm{Kg} \end{gathered}$	Bostas	$2.25{ }^{\text {b }}$	2.50	3.83
	Orina	$2.66{ }^{\text {b }}$	2.41	3.66
	Testigo	2.16^{a}	2.41	3.16
	ES \pm	0.08*	0.25	0.08
MO, \%	Bostas	5.32	3.65	$4.49{ }^{\text {b }}$
	Orina	5.62	4.99	$5.32{ }^{\text {a }}$
	Testigo	5.56	5.59	$4.26{ }^{\text {bc }}$
	ES \pm	0.23	0.43	$0.27{ }^{*}$

La acción diferenciada de la bosta y la micción en el rendimiento del pasto ya había sido comentada por Mc Luscky (1960, citado por Marsh y Campling 1970) y es posible que tenga su origen en la diferente solubilidad de sus componentes, particularmente los nitrogenados (Simpson y Stobbs 1981; Lupwayi y col. 2000).
El efecto depresivo sobre el rendimiento del pasto que produjo la bosta que se depositó en enero, también había sido señalado por Mc Diarmid y Watkin (1971) e Hirata et al (1988 ${ }^{\text {a }}$). Así, Mc Diarmid y Watkin (1971) habían considerado que los tejidos vegetales bajo las bostas se pudren, lo cual causa reducciones en el rebrote del pasto, aún cuando la bosta sea removida. Hirata y col. (1989a) coinciden con estas observaciones; sin embargo, consideraron al pasto Paspalum notatum Flugge como una planta tolerante a la cobertura de la bosta, ya que fue capaz de mantener, a pesar de ello,
niveles adecuados de producción primaria neta, lo cual se debió a que este pasto posee alto índice de área foliar y almacenamiento de asimilados, así como de N en el follaje.

En el presente experimento, este efecto depresivo fue limitado y, aparentemente, durante el período anterior al segundo muestreo, la hierba se recuperó, pero esto no llegó a manifestarse en un rendimiento estadísticamente mayor al resto del pastizal. No obstante, en el área físicamente ocupada por la bosta, el pasto presentó una tasa de crecimiento mayor al resto del pastizal, lo cual confirma nuestra apreciación. Es decir, que aunque no tenemos más información relacionada con la producción y almacenamiento de asimilados, podría pensarse que el pasto C. nlemfuensis empleado en nuestro estudio, puede considerarse también como una especie tolerante a la cobertura de la bosta.

En general, el contenido de nutrientes del pasto en las áreas de influencia de la bosta y la orina, se encuentra dentro de los rangos de valores señalados en la literatura (Ortiz 1983; Crespo y col. 1986). O sea, no se encontraron niveles de deficiencias de nutrientes en ninguno de los muestreos realizados. Por el contrario, en ocasiones el pasto que creció sobre el parche de orina, contuvo valores de N y de K mayores a los valores normales señalados para esta especie. Así, se encontraron contenidos extremos de 3.2% de N y más de 2.0% de K a los 60 y 120 días de haber aplicado orina en marzo.

En ningún caso el contenido de Mg del pasto resultó inferior a 0.2% (el valor mínimo observado fue 0.35%), el cual ha sido indicado como índice de "tetania de la hierba" (Ortiz 1983; Crespo y col. 1986). Tampoco la relación K/Ca+Mg superó los valores de seguridad que refieren Voisin (1961) y Kemp y T Hart (1967, citados por Saunders 1984). Igual afirmación puede realizarse con respecto a la razón Ca / P (Agricultural Research Council 1980, citado por Saunders, 1984; Ortiz 1983 y Crespo y col. 1986). No obstante, los altos contenidos de K presentado en el pasto que creció sobre la mancha de orina, pudiera alertar sobre la posible incidencia de desbalance de nutrientes en un pastizal pastoreado intensivamente.
El hecho de que la bosta no produjo incremento significativo en el contenido de N en el follaje del pasto, también fue encontrado por Hirata y col. (1989a) y Sugimoto y col. (1991). Sin embargo, otros autores han señalado altas tasas de recuperación del N de
la orina en el tejido del pasto (Watson y Lapins 1969; Ball y Keeney 1981 y Catchpoole y Graeme Blair 1990). Incluso, estos últimos autores hicieron hincapié en la diferenciada recuperación del N a partir de ambos tipos de excreciones.
El K fue el nutriente que mayor incremento mostró en el pasto producto del efecto de la bosta y la orina. Su recuperación por el pasto que creció sobre las manchas de orina fue significativa en todos los muestreos. La importancia de la bosta y la orina en la dinámica de este elemento ha sido estudiada por numerosos autores (Joblin y Keogh 1979; How 1981; Ayarza 1988; Suzuki y col. 1991 y Nennich y col. 2006). Todos ellos coincidieron que los contenidos de K en las hierbas que crecen en las áreas de influencia de las excreciones son significativamente mayores que en el resto del pastizal.

La falta de respuesta de la hierba al Ca y al Mg aportado por la bosta ha sido observada por otros investigadores. Así, las investigaciones revisadas por Wilkinson y Lowrey (1973) tampoco evidencian claramente el reciclaje efectivo de estos nutrientes por los animales en pastoreo. Incluso, estos autores refieren que el contenido de K en la orina deprimió los contenidos de Ca y Mg en los pastos. Según Underhay y Dickison (1978) la insolubilidad del Mg vía bosta se debe a que este elemento es acomplejado en los residuos porfirínicos de la clorofila, así como por su captura por agentes quelantes secretados por los hongos durante el proceso de la descomposición. Luego, cabe también la posibilidad de que el Ca sea acomplejado en forma de quelatos (Ortega 1982), lo que influiría en su relativa insolubilidad y baja disponibilidad para la planta.

Al comparar el efecto de las bostas aplicadas artificialmente o directamente por el ganado, en el rendimiento y composición química del pasto, Rodríguez y col. (2005) no encontraron diferencias de interés, lo cual indica que tales estudios se pueden realizar satisfactoriamente con la deposición artificial de las mismas sobre el pasto, el cual fue el procedimiento seguido por nosotros en la presente investigación.

Por otra parte, a pesar de que los muestreos que se hicieron para determinar la composición química del suelo se realizaron en un tiempo muy corto (a los 45 días de las deposiciones hechas en la estación lluviosa y a los 65 días en la estación poco lluviosa), el contenido de K fue mayor en el suelo cubierto por la orina. Esto es una respuesta directa a la alta solubilidad en que se presenta este nutriente en las
micciones (Vallis y col. 1982). La ausencia de efecto en los restantes indicadores estudiados (excepto el Mg y la MO cuando las aplicaciones se hicieron en julio y marzo, respectivamente) pudiera deberse al limitado tiempo de la evaluación, pues Murphy y col. (1995) encontraron que, además del N, se incrementaron los contenidos de P, K Ca y C en el suelo cubierto por las excreciones y Ferreira y col. (2000) señalaron contenidos máximos de $0.9 \mathrm{~g} \mathrm{~N} / \mathrm{m}^{2}$, aún 170 días después de aplicar orina.
Por su parte, Bol y col. (2004) indicaron que el secuestro de C de las excretas en el suelo depende de la localización de éstas en el pastizal y de los microorganismos presentes. Estos autores señalaron que solo entre 32 y 66% del C contenido en el estiércol es secuestrado en los agregados del suelo en los primeros 5 cm , aunque posteriormente se incorpora a las capas más profundas del perfil.
Aunque la actividad biológica en el suelo bajo la acción de las bostas no fue investigada en este trabajo, los estudios de Rodríguez y col. (2003) comprobaron mayor actividad de la macrofauna, a la profundidad de $10-20 \mathrm{~cm}$, en el mes de julio, que fue el más caluroso y húmedo del año. Ellos identificaron grupos de la mesofauna y de la macrofauna y, en este caso, las larvas de coleópteros y las lombrices, fueron las más abundantes. Este último resultado fue también encontrado por Cabrera (2003), cuando estudió la actividad biológica de un ecosistema de pastizal en la provincia de La Habana, Cuba.
Nuestros resultados indicaron la necesidad de realizar investigaciones a más largo plazo, para poder determinar con precisión la contribución de las excreciones de los animales en la fertilidad del suelo.

Experimento 4. Estudio de la volatilización de amoniaco de las bostas y la orina del ganado vacuno

Procedimiento experimental:
Al inicio de los meses de enero, marzo y julio, se depositaron, sobre un pastizal de C. nlemfuensis, 8 bostas de 2.5 Kg cada una y 8 micciones de 3 litros cada una, recién defecadas por vacas lecheras. La concentración promedio de N fue de $2 \mathrm{~g} / \mathrm{Kg}$ en las bostas frescas y 4.8 g de N/litro en la orina, que representaron 1018.6 Kg de N / ha y 1200 Kg de N/ha, respectivamente, en el área de suelo físicamente cubierta por ellas.

Sobre cada bosta y micción se colocó un tubo plástico de 10 cm de diámetro y 30 cm de alto. En la boca superior de cada tubo se situó, cada 24 horas, un papel de filtro previamente embebido con ácido bórico al 4%, el cual se protegió por un pomo de vidrio invertido, ajustado al tubo, para evitar la entrada de agua y el escape de amoníaco. El papel de filtro se retiraba cada 24 horas y se introducía en un beaker, al que se añadía agua destilada y gotas de bromocresol verde y rojo de metilo. El amoníaco así capturado por la solución bórica en el papel de filtro se valoró con ácido sulfúrico 0.02 N , hasta obtener el punto de viraje.
Las determinaciones de amoníaco desprendido por cada bosta y mancha de orina fueron hechas diariamente, hasta el momento en que no se detectó ningún valor.
En la tabla que sigue se muestra el comportamiento semanal de la lluvia y la temperatura durante el período experimental.
Para determinar la curva de mejor ajuste entre la pérdida de amoníaco y los días transcurridos a partir de la deposición de la bosta y la micción en el campo, se compararon los modelos de Gompertz, Función de Gauss, Exponencial, Logístico y Logarítmico en Función Cuadrática.
Comportamiento semanal de la lluvia y la temperatura durante el período experimental

Experimento 1			Experimento 2				Experimento 3		
Fecha	Lluvia, mm	Temp. ${ }^{0} \mathrm{C}$	Fecha	Lluvia, mm	Temp .${ }^{0} \mathrm{C}$	Fecha	Lluvia, mm	Temp. ${ }^{0} \mathrm{C}$	
Enero			Marzo $18-24$	75	19.0	$11-17$	10.0	21.5	
			$18-24$	10.5	22.6	$11-17$	65.0	26.0	
Febrero			Abril		45.0	26.6			
$1-7$	4.0	18.5	$1-7$	22.5	23.4	$1-7$	23.2	26.7	
$8-14$	0.0	18.6							
$15-21$	2.2	18.8							
$23-28$	5.2	19.5							

Resultados y discusión

En los tres períodos experimentales los datos mostraron mejor ajuste a la Función de Gauss (tabla 19) en el caso de las bostas, con valores R^{2} de $0.89,0.88$ y 0.89 y al modelo Logarítmico en Función Cuadrática (tabla 20) en el caso de la orina, cuyos valores R^{2} fueron de $0.86,0.89$ y 0.61 para el primero, segundo y tercer experimento, respectivamente.

Tabla 19. Coeficientes de determinación, varianza residual y parámetros del modelo de Gauss ajustado en cada experimento con las bostas

Experimento	R^{2}	$\mathrm{~V}(\mathrm{e})$	a	b	c
Primero	0.89	0.0610	29.78	6.74	8.09
Segundo	0.88	0.3017	45.93	4.43	8.73
Tercero	0.89	0.0618	29.88	6.76	8.70

$\mathrm{R}^{2}=$ coeficiente de determinación $\mathrm{V}(\mathrm{e})=$ varianza estimada
a,b,c = parámetros del modelo
Tabla 20. Coeficientes de determinación y ecuación de mejor ajuste en cada experimento con la orina

Experimento	Ecuación de regresión	$E S\left(\mathrm{~b}_{1}\right)$	$\mathrm{ES}\left(\mathrm{b}_{2}\right)$	R^{2}	P
Primero	$\mathrm{Y}=4.62-2.145 \log \mathrm{x}+$ $0.255 \log \mathrm{x}^{2}$	0.1252	0.0303	86.94	0.001
Segundo	$\mathrm{Y}=4.61-2.61 \log \mathrm{x}+$ $0.384 \log \mathrm{x}^{2}$	0.0987	0.0239	89.95	0.001
Tercero	$\mathrm{Y}=2.48 \log \mathrm{x}+0.0089$ $\log \mathrm{x}^{2}$	0.1541	0.0406	61.27	0.001

$R^{2}=$ coeficiente de determinación $\quad \mathrm{Y}=$ amoníaco volatilizado, Kg/ha
$\mathrm{ES}=$ error estándar $\quad \mathrm{x}=$ días de depositada la orina

En cada uno de los experimentos con las bostas, el amoníaco volatilizado fue bajo en los primeros días (menos de $1 \mathrm{Kg} / \mathrm{ha} / \mathrm{día}$), a partir de lo cual el valor se incrementó gradualmente, hasta alcanzar $4 \mathrm{Kg} / \mathrm{ha} / \mathrm{día}$ a los $8-10$ días en el segundo experimento y $2 \mathrm{Kg} / \mathrm{ha}$ /día a los 8 días en el primer y tercer experimento, respectivamente. Posteriormente, los valores descendieron paulatinamente con el tiempo y no se detectaron después de 23 días en todos los casos (figura 5).

Días

Figura 5. Curva de volatilización de N-NH3 de la bosta en los 3 experimentos
El total de N -amoniacal volatilizado por bosta fue de 25.5 , 41.8 , y $25.5 \mathrm{Kg} / \mathrm{ha}$ en el primero, segundo y tercer experimento, que representaron 2.5, 4.1 y 2.5% del N total aplicado con las deyecciones, respectivamente.

Por su parte, en cada uno de los experimentos con orina, el NH_{3} volatilizado en los primeros días fluctuó de 2.95 a $4.77 \mathrm{Kg} / \mathrm{ha}$ /día, a partir del cual el valor disminuyó gradualmente, hasta desaparecer a partir de los 15 días (figura 6). El total de Namoniacal volatilizado por la mancha de orina fue de $22.3,22.9$ y $21.9 \mathrm{Kg} / \mathrm{ha}$ en el primero, segundo y tercer experimento, que representaron $1.8,1.9$ y 1.8% del N total aplicado, respectivamente.

Días
Figura 6. Curva de volatilización de N-NH3 de la orina en los 3 experimentos
La distribución en tiempo del N -amoniacal volatilizado por la bosta fue totalmente diferente a lo encontrado en la orina. Esto se puede atribuir a que la mayor parte del N de la orina se presenta en forma soluble hidrolizable, mientras que la bosta contiene solo pequeñas cantidades de N soluble (Hakamata y col. 1971) y la liberación del N de la excreta ocurre lentamente a medida que se produce su descomposición. Esto último fue corroborado por Sugimoto y Ball (1992) en pastizales en Japón.
El comportamiento del amoníaco volatilizado por la orina en el presente experimento coincide con lo señalado por Vallis y col. (1982); Sugimoto y Ball (1992) y Lokyer y Whitehead (1990), quienes encontraron mayores tasas de volatilización durante las primeras 24-72 horas.

Vallis y col. (1982) y Lokyer y Whitehead (1990) plantearon que el 80 \% de la orina se hidrolizó en solo 2 horas y solamente cantidades trazas fueron hidrolizadas 24 horas después, mientras que Whitehead (1970) había demostrado que entre el $70-90 \%$ del N de la orina aparece como urea.
Valores de amoníaco volatilizado por la orina del orden de $9-18 \%$ fueron indicados por Doak (1982) y Ball y col. (1979). Anteriormente, Gasser (1964) había indicado que en los suelos con baja capacidad de cambio catiónico (c.c.c) y pH alcalino se favorece la volatilización, mientras que en los ácidos y de baja c.c.c, se reduce significativamente.

En nuestro experimento, el suelo latosólico utilizado posee estas últimas propiedades, lo cual pudiera explicar el bajo porcentaje de N volatilizado como amoníaco por la orina. La cantidad y distribución de las lluvias durante las primeras semanas de depositadas las bostas en el pastizal, parece haber influido de forma directa en la pérdida de amoníaco por ellas. Así, en los experimentos 1 y 3, donde la lluvia caída durante las dos primeras semanas fue mayor de 100 mm , el amoníaco volatilizado fue mucho menor que en el experimento 2 , en el que la lluvia fue de solo 20.1 mm en similar período de tiempo. Esto se debe a que la lluvia facilita la entrada al suelo de gran parte del N soluble que se libera de la bosta en proceso de descomposición y disminuye así la posibilidad de volatilización del N amoniacal.
El porcentaje de $\mathrm{N}-\mathrm{NH}_{3}$ volatilizado por las bostas (2.5 a 4.1%) concuerda con los rangos señalados por Sugimoto y Ball (1992) en Japón, aunque ellos encontraron mayor porcentaje a medida que fue mayor el peso de la bosta depositada. El alto valor de amoníaco volatilizado por la bosta de mayor peso inicial es causado, principalmente, por diferencias en la actividad de la fauna, la cual podría ser más activa en la bosta de mayor tamaño, debido al alto suministro de energía y nutrientes.
Lo anterior puede indicar que en sistemas de pastoreo muy intensivos, donde puede ocurrir una elevada acumulación de bostas, e incluso la superposición de unas sobre otras, la volatilización de N -amoniacal puede alcanzar elevado valor y comprometer así el balance del N en el sistema suelo-pasto-animal. Es necesario realizar estudios a más largo plazo, en condiciones de pastoreo, para determinar con mayor exactitud, el valor del N volatilizado de las bostas y las micciones de los vacunos y contribuir más al conocimiento del balance del N en los sistemas de pastoreo intensivo.

Principales resultados

1. En 16 horas diarias de pastoreo, una vaca lechera deposita en el pastizal un promedio de 10 bostas, cada una de las cuales pesa $0.29 \pm 0.08 \mathrm{Kg}$ base seca y cubre un área de $25 \pm 5 \mathrm{~cm}^{2}$.
2. Las bostas depositadas contienen un promedio de $15.9 \pm 1.00 \%$ de MS y $1.52 \pm$ 0.15% de N .
3. En una ocupación, las bostas y las micciones de las vacas, producen diferentes manchas de fertilidad en el pastizal, que cubren el 6.8% del área y representan alrededor del 20\% de la disponibilidad total de pasto.
4. En las diferentes manchas de fertilidad, el pasto muestra notable variación en su composición química, con mayor contenido de PB, K y agua en las áreas de alta fertilidad, atribuido, presumiblemente al efecto de la orina.
5. El número promedio de bostas que defecan las vacas en cada rotación se puede estimar, con una precisión de 94.2%, al muestrear 27 cuadrantes de $25 \mathrm{~m}^{2}$ cada vez.
6. En el pastizal, la velocidad de desaparición de las bostas varía notablemente con el período del año, con tasas más altas (g MS/mes) en junio, julio, agosto y septiembre, que son los meses más lluviosos y calientes.
7. De manera general, el contenido de nutrientes de las bostas varía con la época del año y la mayoría, excepto el Ca, presentan mayores valores en la estación lluviosa.
8. Las micciones se caracterizan por poseer alto contenido de N y K y muy bajo contenido de P.
9. El mayor efecto de la bosta en el rendimiento del pasto se produce en el mes de julio, donde se manifiesta hasta 30 cm más allá del borde de la misma.
10.La orina influye favorablemente en el rendimiento del pasto en todos los meses del año, con mayor intensidad en julio, y ese efecto se manifiesta exclusivamente en el área física que ella ocupa.
11.El efecto de las bostas en la composición química del pasto es errática, pero la orina incrementa los contenidos de N y K en casi todos los meses de deposición.
10. En el suelo las bostas y la orina tienen poco efecto en el pH, P y Ca , pero cuando se depositan en julio, ambas excreciones aumentan, de forma significativa, los contenidos de MO, N, K y Mg. Por su parte, cada vez que se deposita la orina se produce un aumento del contenido de K en el suelo.
11. Los datos de pérdidas de NH_{3} de la bosta se ajustan bien ($\mathrm{R}^{2} \pm 0.89$) a la Función de Gauss y la volatilización promedio de este gas representó entre 2.5 4.1% del N contenido en cada bosta.
12. Los datos de pérdidas de NH_{3} de la orina se ajustan bien ($\mathrm{R}^{2} \pm 0.61-0.89$) al modelo Logarítmico en Función Cuadrática y la volatilización representó el 2\% del N de cada micción.

CAPÍTULO III

COMPORTAMIENTO DE LA HOJARASCA

Introducción

El porcentaje de utilización de los pastos por los rumiantes en pastoreo suele variar en el orden de $40-60 \%$. En estas condiciones, el retorno de nutrientes vegetales al suelo a través de la hojarasca del pastizal, puede ser mayor que el retornado por las excreciones de los animales (Thomas, 1992). Este retorno de nutrientes al suelo y el subsiguiente reciclaje vía consumo vegetal, puede ser manipulado mediante la selección de especies de pastos que produzcan elevada cantidad de hojarasca de fácil descomposición y con un manejo animal que permita una adecuada acumulación de la misma. Esto puede ser manejado de forma tal, que se logre sincronizar el suministro de nutrientes al suelo por esta vía y la demanda del pasto (Sánchez et al 1989; Koukoura y col. 2003).

Para desarrollar este manejo, se requiere un conocimiento adecuado de las características de la descomposición y liberación de nutrientes de la hojarasca que producen las diferentes especies de plantas empleadas comúnmente en los pastizales. Alguna información referente a la descomposición de la hojarasca de diversas gramíneas y leguminosas tropicales puede ser revisada en las publicaciones de Gupta y Singh (1981), Bruce y Ebershon (1982), Robbins y col. (1989) y Palm y Sánchez (1990).

Por su parte, en los sistemas silvopastoriles, la producción de hojarasca en el ecosistema debe ser mayor que en los pastizales sin árboles, lo cual puede representar una proporción importante de los nutrientes que necesita el estrato herbáceo. Esto pudiera contribuir a mantener la productividad de los pastizales (Pentón 2000; Crespo y Fraga 2002)
El objetivo de la presente Capítulo fue estudiar las características de la acumulación y descomposición de la hojarasca de diferentes especies de gramíneas y leguminosas comunes en la ganadería y los nutrientes liberados por esta vía al ecosistema del
pastizal, así como investigar la producción de hojarasca y el aporte de nutrientes en pastizales que difieren en la composición de especies.

Experimento 5. Estudio de la producción de hojarasca de los pastos y nutrientes retornados con ella al ecosistema de pastizal

Las especies de leguminosas, gramíneas y arbóreas estudiadas se indicaron en el Capítulo I.

Procedimiento experimental:

a) Producción de hojarasca

a.1- en las leguminosas

En un suelo Ferralítico rojo bien preparado, se marcaron parcelas de $400 \mathrm{~m}^{2}$ y se sembraron en julio las leguminosas indicadas en el Capítulo I, con las siguientes dosis de semillas: mucuna ($30 \mathrm{Kg} / \mathrm{ha}$), canavalia ($50 \mathrm{Kg} / \mathrm{ha}$), desmodium ($5 \mathrm{Kg} / \mathrm{ha}$), kudzú (2 $\mathrm{Kg} / \mathrm{ha}$), stylosanthes ($3 \mathrm{Kg} / \mathrm{ha}$) y glycine/siratro ($3 \mathrm{Kg} / \mathrm{ha}$).

Antes de la siembra, las semillas se inocularon con la cepa específica de Rhyzobium y no se aplicó fertilizante en ningún momento. No hubieron problemas con la germinación en el campo y fueron necesarias 3 limpiezas manuales para el control de malezas; el establecimiento se logró en diciembre (6 meses después de la siembra). En esta fecha, todas las leguminosas cubrieron más del 90% de la superficie del terreno. A partir de aquí, se comenzó la medición de la acumulación de hojarasca durante 1 año.

La tasa mensual de acumulación de hojarasca de cada una de las leguminosas se estimó mediante la técnica recomendada por Bruce y Abersoha (1982, citado por Thomas y Asakawa 1993).

a. 2 - en las gramíneas

La investigación sobre la acumulación de hojarasca de B. decumbens se desarrolló en un bloque de $225 \mathrm{~m}^{2}$, plantado 5 años antes, empleando similar técnica que la descrita anteriormente para las leguminosas, aunque aquí el pasto fue cortado 7 veces durante el año simulando el diente del animal.

Las restantes especies P. maximum, C. nlemfuensis, pastos nativos solos y pastos nativos/L. leucocephala, fueron estudiadas en condiciones de pastoreo, empleando el procedimiento propuesto por Medweeka-Kornos (citado por Crespo y Pérez, 2000).

a.3- en Albizia lebbeck

Para este estudio se identificaron 10 árboles de albizia, de 10 años de edad, en un cuartón empastado con C. nlemfuensis en el Instituto de Ciencia Animal.

Debajo de la copa de cada árbol se situaron al azar 4 trampas de hojarasca. Cada trampa consistió de un marco de acero de $0.5 \mathrm{~m} \times 1 \mathrm{~m}$, levantado del suelo por 4 patas de 60 cm de altura cada una.

Dentro de cada marco se situó un colector de hojarasca, que consistió en un saco de nylon de 40 cm de profundidad. Semanalmente, desde octubre hasta mayo, se pesó la hojarasca caída en sus componentes hojas, tallos, pedúnculos, ramas y vainas. Cada uno de estos componentes fue secado en estufa y sus valores se expresaron en base seca.

El procedimiento que se siguió para determinar la tasa de descomposición de la hojarasca de cada especie, el análisis químico de la misma, los nutrientes liberados por ella y el procesamiento estadístico de los resultados fue indicado en el Capítulo I.

Resultados y discusión
La hojarasca que se acumuló durante 1 año por las leguminosas perennes, se muestra en la tabla 21. Como se aprecia, la mezcla de M. atropurpureum/G. wightii produjo la mayor cantidad de hojarasca, mientras que las restantes especies no difirieron entre sí y acumularon entre $700-900 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2}$.

Tabla 21. Hojarasca acumulada durante 1 año por las leguminosas perennes

Leguminosa	Hojarasca acumulada, g MS $/ \mathrm{m}^{2}$
Siratro/glycine	1866.3^{a}
Kudzú	902.5^{b}
Desmodium	865.4^{b}

Stylosanthes	702.5^{b}
ES \pm	$92.3^{* *}$

${ }^{* *} \mathrm{P}<0.01{ }^{\mathrm{a}, \mathrm{b}, \mathrm{c}}$ Medias con superíndice distinto difieren significativamente a $\mathrm{P}<0.05$ (Duncan, 1955)

Las ecuaciones de mayor ajuste entre la edad de estas leguminosas y la hojarasca acumulada por ellas se indica en la tabla 22.

Tabla 22. Modelos de mejor ajuste entre la edad de las leguminosas perennes y la hojarasca acumulada por ellas

Leguminosa	Ecuación	R^{2}
Siratro/glycine	$\mathrm{Y}=6.3575 \mathrm{X}-166.6363$	0.98
Kudzú	$\mathrm{Y}=3.0409 \mathrm{X}-62.8181$	0.98
Desmodium	$\mathrm{Y}=2.2742 \mathrm{X}+72.9090$	0.97
Stylosanthes	$\mathrm{Y}=2.4078 \mathrm{X}-11.0545$	0.93

Donde:
$\mathrm{Y}=$ hojarasca acumulada, $\mathrm{g} \mathrm{MS} / \mathrm{m}^{2}$
$X=$ edad, días
Por su parte, a los 180 días de sembradas, las leguminosas temporales acumularon entre 200 a $264 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2}$, sin diferencia significativa entre ellas.
Entre las gramíneas (tabla 23) B. decumbens y C. nlemfuensis presentaron mayor acumulación de hojarasca (más de $200 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2} /$ año).

Tabla 23. Rangos de acumulación de hojarasca de las gramíneas perennes

Especie	Hojarasca acumulada, g/m²/año
Tejana	$50-100$
Pitilla	$120-180$
Espartillo	$100-150$
Estrella	$200-250$
Guinea	$80-180$
Brachiaria	$250-300$
P. naturales + L. leucocephala ${ }^{(1)}$	$190-220$

(1) Pastizal compuesto por tejana, pitilla y espartillo como pastos base y L. Leucocephala en el 100\% del área

Estas gramíneas mostraron menor capacidad de acumular hojarasca que las leguminosas, pues ninguna sobrepasó el valor de $300 \mathrm{~g} / \mathrm{m}^{2} / a n ̃ o$. En términos generales, esto concuerda con los valores señalados por Thomas y Asakawa (1993) para las gramíneas Brachiaria dictyoneura y B. humidícola, con $1180.9 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2}$ en solo seis meses. Esto indica la necesidad de continuar más estudios que investiguen la capacidad de producción de hojarasca de un amplio número de especies y variedades de pastos tropicales, con énfasis en las más extendidas en la ganadería. En nuestro experimento, B. decumbens y C. nlemfuensis tuvieron la mayor capacidad de producción de hojarasca, aunque aún los pastos naturales, como P. notatum, D. annulatum y S. indicus, acumularon hasta $180 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2}$, lo que equivale a unos 1800 Kg/ha.
Por otra parte, la determinación de la hojarasca de A. lebbeck, durante el período de diciembre a marzo, en que ocurre su total acumulación en este árbol, se muestra en la tabla 24. Se nota que en las primeras semanas, la principal contribución la realizan las hojas, pecíolos y ramitas, pero estas fracciones disminuyen con el tiempo, hasta que las vainas constituyeron el 100% de la hojarasca que se produce en marzo. En total cada árbol produjo 80.20 g MS de hojarasca.

Tabla 24. Producción de hojarasca de A. lebbeck desde diciembre hasta marzo

	Fecha de muestreo					
Componentes	12 de diciembre	5 de enero	21 de enero	4 de marzo	Total	
Hojas, g	16.0	2.86	1.05	--	19.91	
Pecíolos+ramitas, g	9.83	7.88	4.88	--	22.59	
Vainas, g	0.22	1.88	9.94	35.6	37.70	
Total/planta, g					80.20	

En la figura 7 se muestra las curvas de descomposición de la hojarasca de los diferentes pastos hasta los 240 días de exposición en el pastizal

Figura 7. Comportaminto de la descomposición de la hojarasca de gramíneas y leguminosas perennes

La hojarasca de las leguminosas perennes presentó una descomposición más rápida que la de las gramíneas. Así, a los 210 días ya había desaparecido toda la hojarasca de
las leguminosas, mientras que, en similar período de tiempo, aún quedaban en las bolsas más del 80% de la hojarasca de P. máximum, B. decumbens y C. nlemfuensis, así como el 70% de la de los pastos naturales y el 50.5% en pastos naturales+leucaena.
Entre las leguminosas, la hojarasca de D. ovalifolium y P. phaseoloides, mostraron una descomposición más rápida (16\%/mes) que S. guianensis y M. atropurpúreum/G. wightii (15\%/mes).
Prácticamente la hojarasca de las gramíneas demoraron casi 1 año en desaparecer totalmente, aunque en ese tiempo aún el 30%, el 15% y el 11% del peso inicial de C. nlemfuensis, P. maximum y D. decumbens, respectivamente, permanecían en las bolsas.

En la tabla 25 se indican los valores promedios de los contenidos de N, P, K y lignina, así como la relación lignina: nitrógeno (L/N) de las diferentes especies. En términos generales, el N, el P y la lignina presentaron mayores valores en las leguminosas, mientras que la relación L/N fue mayor en las gramíneas. Por su parte, el K mostró valores muy bajos en la hojarasca de los pastos naturales y de S. gracilis y D. ovalifolium.

Las notables diferencias mostradas entre las especies de pastos en la velocidad de desaparición de la hojarasca parece estar íntimamente relacionada con el contenido de N y con la relación L/N de la misma. Así, la hojarasca de las gramíneas presentaron, generalmente, menos N y mayor relación L/N que las leguminosas y la hojarasca de ellas demoraron mucho más tiempo en descomponerse.
En la literatura abunda la información que señala este comportamiento, indicándose que la relación C / N y los contenidos de lignina, celulosa y polifenoles de la hojarasca se relacionan, con frecuencia, con la tasa de descomposición. Según Tian (1992) y Koukoura y col. (2003) la relación C/N tiene, por lo general, un efecto notable en el modelo de descomposición y es frecuentemente mencionada en la literatura como el principal indicador de la actividad microbiana (Muys, Lust y Granval 1992).
Existen varios estudios donde se explica el papel de la lignina como reguladora del proceso de descomposición de la hojarasca (Kinderman 1968, citado por Tian y col. 1993; Tate 1987). Según Tian (1992) con un incremento del contenido de lignina el
grado de descomposición generalmente disminuye y puede provocar la inmovilización de nutrientes, principalmente de nitrógeno. Esto también fue demostrado por Melillo, Aber y Musatone (1992) y Lu-Jun Li (2010).
Al estudiar el comportamiento de la hojarasca de un grupo numeroso de leguminosas y gramíneas en Colombia, Thomas y Asakawa (1993) encontraron que la relación C/N explicó, de forma clara, las diferencias en la descomposición, aunque también encontraron que el contenido de lignina y de polifenoles mostró una importante influencia.
Tabla 25. Composición química de la hojarasca de las diferentes especies (\% b. seca)

Especie	N	P	K	Lignina	L / N
P. phaseoloides	2.66	0.38	0.26	16.90	6.87
DS	± 0.5121	± 0.044	± 0.2056	± 2.9648	± 1.7511
M. atropourpureum/G. wightii	3.53	0.70	0.50	16.33	6.81
DS	± 0.3895	± 0.1923	± 0.3047	± 2.2413	± 1.4257
S. guianensis	2.49	0.60	0.28	14.92	6.81
DS	± 0.2043	± 0.1719	± 0.0517	± 3.8946	± 1.7288
D. ovalifolium	2.67	0.67	0.31	17.89	6.09
DS	± 0.5386	± 0.1809	± 0.0858	± 2.4877	± 1.5022
C. ensiformis	2.42	0.46	0.31	16.69	5.87
DS	± 0.5291	± 0.1630	± 0.1529	± 2.9738	± 1.9367
S. atérrimum	3.10	0.29	0.34	19.62	6.47
DS	± 0.5982	± 0.0921	± 0.2130	± 3.3351	± 1.5156
P. notatum/S. indicus/D. annulatum	1.02	0.06	0.17	12.49	11.31
DS	± 0.1598	± 0.0123	± 0.0667	± 3.0454	± 3.6432
Pastos naturales/leucaena	1.82	0.08	0.15	13.98	9.43
DS	± 0.7122	± 0.0306	± 0.0553	± 3.4430	± 6.1863
C. nluenfuensis	0.97	0.15	0.35	13.69	14.13

DS	± 0.1237	± 0.0426	± 0.1106	± 2.6344	± 2.0010
P. maximum	1.23	0.17	0.37	14.92	12.55
DS	± 0.1608	± 0.0279	± 0.0787	± 1.8436	± 1.7209
B. decumbens	1.39	0.20	0.37	14.29	10.45
DS	± 0.1830	± 0.0408	± 0.1144	± 1.2554	± 1.9798

Los modelos ajustados para el N, P y K liberados por la hojarasca de las leguminosas, se muestran en las tablas 26,27 y 28.
Tabla 26. Modelos que relacionan el N liberado por la hojarasca de las leguminosas en función del tiempo

Leguminosas	Ecuación	R^{2}
D. ovalifolium	$\mathrm{Y}=0.1239 \mathrm{X}+3.9093$	0.94
$\mathrm{M} . \quad$ atropurpureum/G. wightii	$\mathrm{Y}=0.1234 \mathrm{X}+3.9062$	0.95
P. phaseoloides	$\mathrm{Y}=0.1217 \mathrm{X}+0.0878$	0.98
S. guianensis	$\mathrm{Y}=0.1192 \mathrm{X}+2.8108$	0.93

Donde: $\quad \mathrm{Y}=\mathrm{N}$ liberado, $\mathrm{g} / \mathrm{Kg} \quad \mathrm{X}=$ días en el pastizal
Tabla 27. Modelos que relacionan el P liberado por la hojarasca de las leguminosas en función del tiempo

Leguminosas	Ecuación	R^{2}
D. ovalifolium	$\mathrm{Y}=0.0303 \mathrm{X}+0.7718$	0.89
$\mathrm{M} . \quad$ atropurpureum/G. wightii	$\mathrm{Y}=0.0313 \mathrm{X}+0.5703$	0.89
P. phaseoloides	$\mathrm{Y}=0.0726 \mathrm{X}+0.0669$	0.95
S. guianensis	$\mathrm{Y}=0.0205 \mathrm{X}+0.8312$	0.88

Donde: $\quad \mathrm{Y}=\mathrm{N}$ liberado, $\mathrm{g} / \mathrm{Kg} \quad \mathrm{X}=$ días en el pastizal
Los nutrientes liberados por la hojarasca de las diferentes leguminosas perennes estudiadas muestran que se puede esperar importantes contribuciones de los mismos
al ecosistema del pastizal, principalmente de nitrógeno. El hecho de haber encontrado altos valores de R^{2} en los modelos indica que los mismos pueden ser muy útiles para incluirlos en un modelo general sobre el reciclaje de los nutrientes en los sistemas de pastizales

Tabla 28. Modelos que relacionan el K liberado por la hojarasca de las leguminosas en función del tiempo

Leguminosas	Ecuación	R^{2}
D. ovalifolium	$\mathrm{Y}=0.0105 \mathrm{X}+0.5090$	0.79
$\mathrm{M} . \quad$ atropurpureum/G. wightii	$\mathrm{Y}=0.0090 \mathrm{X}+0.0752$	0.95
P. phaseoloides	$\mathrm{Y}=0.0111 \mathrm{X}+0.0960$	0.97
S. guianensis	$\mathrm{Y}=0.0141 \mathrm{X}+0.9750$	0.96

Donde: $\quad \mathrm{Y}=\mathrm{N}$ liberado, g/Kg $\quad \mathrm{X}=$ días en el pastizal
Los resultados obtenidos en la presente investigación ponen de manifiesto la importancia que tiene el mantenimiento de las leguminosas en los ecosistemas de pastizales, para incrementar la dinámica de reciclaje de los nutrientes a través de la hojarasca que ellas producen, a lo cual se añade el aumento de la calidad del pastizal y el aporte de N mediante la fijación biológica de este elemento. Esto ayudaría a acelerar el proceso de reciclaje que comúnmente ocurre en los pastizales compuestos solamente por gramíneas, los cuales, como se pudo apreciar, producen hojarasca de muy lenta capacidad de descomposición y liberación de los nutrientes, debido al bajo contenido de N y a la alta relación lignina/nitrógeno, lo cual tiende a la inmovilización de los nutrientes durante períodos de tiempo relativamente prolongados.

Será necesario investigar con mayor detalle la ventaja de mantener mezcla de leguminosas en los pastizales para aumentar la producción de hojarasca de calidad, así como las prácticas de manejo animal que garanticen una prolongada estabilidad de las leguminosas en los mismos.

También deben ampliarse las investigaciones sobre la capacidad de producción de hojarasca de las plantas arbóreas y arbustivas de mayor interés en la ganadería y la
contribución que ellas hacen en el reciclaje de los nutrientes en diferentes sistemas silvopastoriles.

Experimento 6. Producción de hojarasca y retorno de N, P y K en dos pastizales que difieren en la composición de especies

Procedimiento experimental

La investigación se condujo en el área de pastizal de dos vaquerías del Instituto de Ciencia Animal en Cuba, en un suelo pardo con carbonatos. En ambos casos el área fue de 50 ha, divididas en 24 cuartones cada una. El pastizal I estuvo conformado por las siguientes especies: C. nlemfuensis vc. jamaicano (30\%), Pennisetum purpúreum clon CT - 115 (30\%), Panicum maximum vc. likoni (15\%), Paspalum notatum (10\%), Dichantium annulatum (5\%), Cynodon sp. (5\%) y Neonotonia wightii (5\%). Por su parte, la composición del pastizal II fue: Leucaena leucocephala/P. maximum vc. likoni (55\%), Albizia lebbeck/C. nlemfuensis (10\%), Cajanus cajan/C. nlemfuensis (10\%), P. maximum (15\%) y L. leucocephala/C. nlemfuensis (10\%).

Se seleccionó un cuartón representativo de cada especie pura y uno fijo de cada combinación para realizar el muestreo de la producción de hojarasca. Para las especies puras se siguió el procedimiento de Medweeka - Kornos 1970 (citado por Crespo y Pérez, 2000). Este consistió en marcar 20 cuadrados de $0.25 \mathrm{~m}^{2}$ con estacas de hierro, bien enterradas, distribuidas en las dos líneas diagonales del cuartón. Similar procedimiento se utilizó para determinar la hojarasca producida por las gramíneas que acompañan a las plantas arbustivas.
Por su parte, para determinar la producción de hojarasca de las especies arbustivas L. leucocephala y C. cajan se utilizó el procedimiento propuesto por Santa Regina y col. (1997). Para esto se situaron 2 trampas colectoras por arbusto, para un total de 20 plantas por cuartón, situadas al azar por la línea diagonal, con 4 trampas por árbol de A. lebbeck en número similar a las arbustivas. La hojarasca acumulada se determinó en 8 momentos durante el año, siempre el día anterior a la entrada de los animales al pastoreo.

En el Capítulo I se indicaron los procedimientos seguidos para la determinación de la composición química de la hojarasca y su aporte de nutrientes, así como el análisis estadístico empleado para la interpretación de los resultados obtenidos.

Resultados y discusión

La producción total de hojarasca (tabla 29) fue 73\% mayor en el pastizal II (216.2 vs 124.4 t MS). Se destacaron las áreas de L. leucocephala/P. máximum, C. cajan/C. mlenfuensis y L. leucocephala/C. mlenfuensis, que aportaron respectivamente 63, 14 y 12% de la hojarasca total.
De forma similar, la hojarasca aportó en el pastizal con árboles 55% más $\mathrm{N}(41.9$ vs $27.6 \mathrm{~kg} / \mathrm{ha}$), 144% más P (11.0 vs $4.5 \mathrm{~kg} / \mathrm{ha}$) y 174 \% más $\mathrm{K}(26.0 \mathrm{vs} 9.7 \mathrm{~kg} / \mathrm{ha}$) que en el pastizal sin árboles (tabla 30).
La existencia de especies arbustivas y arbóreas en el pastizal demostró ser favorable, al alcanzar una producción de hojarasca más alta. Esta mayor cantidad de hojarasca representa una vía importante de reciclaje de nutrientes en estos sistemas, pues constituye una fuente importante de nutrientes. Esta se pone de nuevo a disposición del estrato herbáceo cuando se completa el ciclo biogeoquímico de los nutrientes contenidos en ella.

La hojarasca producida por Pennisetum cv. CT-115 mostró el mayor coeficiente de variación (CV) en el pastizal I. Según nuestras observaciones, esta variabilidad podría deberse al hábito de crecimiento erecto de esta especie, lo que dificulta el consumo uniforme de las hojas de cada planta por los vacunos. Normalmente, los animales suelen utilizar entre 40 y 60% del material ofrecido, con notable variabilidad espacial en el consumo (Martínez 2001).
En el pastizal II, las combinaciones L. leucocephala/P.maximum y A. lebbeck/C. nlemfuensis tuvieron mayor variabilidad (CV>40\%) en la producción de hojarasca. Esto pudo deberse, por una parte, al efecto que tiene la sombra de estas plantas en el crecimiento y la calidad del estrato herbáceo, lo que influye también en la cantidad y calidad de la hojarasca que producen. Por otra parte, se ha demostrado que la producción individual de hojarasca de plantas arbóreas muestra normalmente una alta variabilidad (Crespo y Fraga 2002).

Tabla 29. Producción de hojarasca de las especies vegetales que componen cada pastizal.

Pastizal I				Pastizal II			
Especies	t MS total	DS	CV,\%	Especies	tMS total	DS	CV,\%
C. nlemfuensis	33.7	0.31	25.1	L. leucocephala/P. maximum P.	137.1	0.61	60.2
purpureum CT-115	52.5	0.21	62.1	A. lebbeck/C. nlemfuensis	17.5	0.70	42.1
P. maximum Cv. likoni	7.5	0.11	23.0	C nlemfuensis			
D. annulatum	3.2	0.32	31.0	P. maximum Cv. likoni	6.1	0.12	25.1
P. notatum	5.0	0.12	18.1	L. leucocephala/C. nlemfuensis	25.0	0.52	32.5
N. wightii	17.5	0.51	22.2	0.51	21.2		
Cynodon sp.	5.0	0.09	35.1				
Total	124.4				216.2		
t/ha	2.48						

El incremento de N, P y K en el pastizal con árboles, debido al efecto de la hojarasca, es de gran importancia para la estabilidad de los sistemas silvopastoriles. Las plantas arbustivas o arbóreas presentes en el pastizal se caracterizan como especies de alto contenido de N en su parte foliar y en la hojarasca que ellas producen (Crespo y Fraga 2002)).

Los resultados de este estudio demostraron que es conveniente introducir especies arbustivas y arbóreas en los pastizales que están compuestos solamente por gramíneas, como una vía para aumentar la producción de hojarasca y hacer más eficiente el ciclo biogeoquímico de los nutrientes.

Tabla 30. Aporte de N, P y K por la hojarasca de cada pastizal I

Especie	N, kg			P, kg			K, kg		
	X	DS	$\begin{aligned} & \text { CV } \\ & \% \end{aligned}$	X	DS	$\begin{aligned} & \text { CV } \\ & \% \end{aligned}$	X	DS	$\begin{aligned} & \text { CV } \\ & \% \end{aligned}$
	Pastizal I								
C. nlemfuensis	327.3	35.3	10.2	50.6	5.8	3.3	118.1	10.1	6.2
P. purpureum CT- 115	577.5	50.5	31.2	94.4	10.1	8.2	168.1	13.5	5.5
P. màximum cv . likoni	92.2	30.2	8.5	12.7	5.8	6.3	27.7	6.0	2.1
D. annulatum	33.3	8.5	7.8	1.9	0.8	3.5	5.5	1.2	6.5
N. Wigtii	315.0	25.2	8.2	56.0	32.3	5.2	148.7	12.5	5.8
Cynodon sp.	38.5	15.0	10.5	7.5	1.5	2.8	17.5	3.3	7.2
Total	$\begin{gathered} 1383 . \\ 8 \end{gathered}$			223.1			485.6		
Kg/ha	27.6			4.5			9.7		
	Pastizal II								
L.Leucocephala/P. màximum	1302.4	$\begin{gathered} 115 . \\ 5 \end{gathered}$	12.1	342.7	11.5	16.1	750.0	$\begin{gathered} 219 . \\ 4 \end{gathered}$	32.1
A. lebbeck/C. nlemfuensis	198.50	20.2	9.8	47.25	16.3	10.6	119.0	30.4	18.6
C. cajan/C. nlemfuensis	268.40	91.5	15.6	85.40	11.6	12.5	219.6	60.8	25.2
P. maximum cv . likoni	39.53	12.3	6.3	12.16	3.5	6.3	27.36	8.5	8.5
L.leucocephala/C. nlemfuensis	287.5	70.2	12.1	62.50	36.2	11.6	187.5	76.5	15.5
Total	2096.4			550.0			1301.5		
Kg/ha	41.9			11.0			26.0		

Principales esultados

1. En el pastizal, las gramíneas B. decumbens y C. nlemfuensis producen mayor volumen de hojarasca que P. maximun y las especies nativas, mientras que, las leguminosas perennes P. phaseoloides, D. ovalifolium, S. humilis y la mezcla Neonotonia wightii/Macroptilium atropourpureum, producen más hojarasca que las gramíneas.
2. La hojarasca de las leguminosas perennes presenta una descomposición más rápida que la de las gramíneas, causado principalmente por el mayor contenido de N en las primeras.
3. Mientras que ya a los 240 días ha desaparecido totalmente la hojarasca de las leguminosas, aún en ese tiempo todavía más del 70\% de la hojarasca de las gramíneas permanece sin descomponer.
4. La presencia de especies arbustivas y arbóreas en el pastizal (sistema silvopastoril) incrementa de forma significativa la producción de hojarasca y el reciclaje de nutrientes, en comparación con el pastizal compuesto exclusivamente por gramíneas.

CAPÍTULO IV

OTRAS VÍAS DE RECICLAJE: BIOMASA RADICULAR Y AGUA DE LLUVIA

Introducción

La fitomasa subterránea de los pastos y el agua de las lluvias, deben ser considerados también en el cálculo de las entradas de nutrientes en los ecosistemas de pastizales en el trópico.
Las gramíneas y las leguminosas pratenses difieren considerablemente en el volumen y la biomasa de sus sistemas radiculares. Así, Pavlychenko (1982), al estudiar el desarrollo y el peso radicular de 10 especies de pastos, encontró que, mientras Andropogon scoparus mostró 37725 m de longitud de raices, que pesaron 188 g MS , Poa pratensis presentó 17131 m , con un peso de 276 g , en un área de $0.25 \mathrm{~m}^{2}$ y 10 cm de profundidad.
Aunque algunos autores indican que la magnitud del desarrollo del sistema radicular lo gobierna la capacidad genética de cada especie (Yates y Jacques 1988), otros reconocen también el efecto de los factores climáticos (Kirk, Stevenson y Clarke 1989). Se está de común acuerdo en que, en los pastizales permanentes, el mayor volumen y biomasa de raíces, se encuentra en los primeros 20 cm del suelo (Rappaport 1988), por lo cual, los métodos para determinar estos indicadores no tienen porqué explorar mayor profundidad.

Un análisis de la información ofrecida por Weinmann (1988) respecto a la composición mineral de las raíces de los pastos nativos, indican que los valores varían poco entre especies, con promedios de $0.55 \% \mathrm{~N}, 0.12 \% \mathrm{P}_{2} \mathrm{O}_{5}, 0.50 \% \mathrm{~K}_{2} \mathrm{O}$ y 3.7% de cenizas. Inexplicablemente, durante la actual década, apenas aparece información en la literatura acerca de las características de la biomasa de las raíces de los pastos más comunes y su aporte de nutrientes al suelo, sin embargo, tal conocimiento es de interés tomarlos en consideración en los estudios sobre el reciclaje de los nutrientes en los ecosistemas de pastizales.

Por otra parte, el aporte de N por las lluvias constituye una fuente no despreciable de este nutriente para la agricultura y su cuantía ha sido investigada en diversos países. Así, en Europa, diversos autores señalan valores que han oscilado entre 1 y 60 Kg N / ha, aunque en la mayoría de los casos, se han indicado valores de $10 \mathrm{Kg} / \mathrm{ha}$ (Fundora, Arzola y Machado 1983). En los Estados Unidos se señalan valores de nitrato y de amonio en el agua de las lluvias que oscilan entre 0.7 y $29.8 \mathrm{Kg} / \mathrm{ha}$, con mayor frecuencia entre 6-7 Kg/ha/año (Erikson 1952, citado por Sauchelli 1970; Karrakery, Bortner y Fergus 1950, citados por Thompson 1966).
Una investigación desarrollada por Mishustin y Cherepkov (1976)) (citado por Yaodin 1982) indicó que en el balance de N en la agricultura de la antigua URSS en los años 1969 y 1973, las lluvias aportaron 2.5 millones de toneladas de N por año, en una superficie de 315 - 319 millones de hectáreas de pastizales, lo que representó el 43$44 \%$ de los ingresos de este elemento en el balance total.
El objetivo del presente Capítulo fue estudiar las características de la biomasa del sistema radicular de los pastos C. nlemfuensis, P. máximum cv. Likoni y Dichantium annulatum en condiciones de pastoreo, el contenido de N en el agua de lluvias y el aporte de nutrientes que ambas vías representan en el ecosistema del pastizal.

Experimento 7. Estudio de la biomasa de raíces de los pastos y el aporte de nutrientes al ecosistema

Procedimiento experimental:

Para el muestreo de la biomasa radicular de los pastos se empleó la metodología descrita por Troughton (1957).
Se excavaron 2 calicatas hasta 60 cm de profundidad en cuartones en que predominaba cada una de las especies estudiadas. El suelo donde crecía D. annulatum pertenece al tipo Húmico Calcimórfico Típico Carbonatado (Hernández y col. 2005), mientras que P. máximum y C. nlemfuensis crecían en un suelo del tipo Ferralítico rojo típico (Hernández y col. 2005).
En cada calicata se muestreó la biomasa de raíces a las profundidades de 0-5 y 5-15 cm . Para ello se usó un tubo o cilindro cortante de 8 cm de diámetro y 15 cm de profundidad, con el cual se extrajeron 3 cilindros por profundidad. El suelo extraído de
cada cilindro se introdujo en un cubo plástico, en donde se lavaron con agua corriente. El agua de lavado fue pasada por un tamiz de 0.5 mm de poros para recuperar las raíces más fina y pequeñas. Finalmente las raíces recolectadas en cada cilindro fueron lavadas con spray de agua para eliminar totalmente los restos de suelo.
Las raíces recuperadas de cada cilindro fueron secadas al aire y después introducidas en una estufa de circulación de aire graduada a $60^{\circ} \mathrm{C}$ hasta peso constante. Después de secadas en la estufa las muestras fueron molinadas con molino de martillo y enviadas al laboratorio para la determinación de materia seca residual y los contenidos de N, P y K por los procedimientos descritos por Herrera y col. (1980).
En los resultados se ofrecen los valores promedios de los diferentes indicadores.

Resultados y discusión

El pasto P. máximum mostró el mayor valor de biomasa radicular (tabla 31) y en todas las especies ésta fue más alta en los primeros 5 cm de profundidad (65% del total).

Tabla 31. Biomasa de raíces de los pastos ($\mathrm{g} / \mathrm{m}^{2}$ seco al aire)

Profundidad, cm	Especies		
	C. nlemfuensis	P. maximum	D. annulatum
$0-5$	663.51	721.30	580.30
$5-15$	339.39	410.55	325.18
$0-15$	1002.90	1131.85	905.48

La composición química de las raíces mostró valores muy bajos de potasio (tabla 32), mientras que el contenido de N apenas sobrepasó de 1%.

Tabla 32. Composición química promedio de las raíces de los pastos (\% b. seca) $)^{(1)}$

Indicador	Especies		
	C. nlemfuensis	P. maximum	D. annulatum
MS	86	83	89
N	0.8	0.9	0.6
P	0.12	0.15	0.10
K	0.09	0.06	0.04

(promedio de 5 análisis)
Tomando en consideración los valores de biomasa radicular y su composición promedio, se estimó la cantidad de nutrientes que puede liberar el sistema radicular de 1 ha de pasto, para lo cual se asumió que el 50% de las raíces pudieran morir anualmente y ser reemplazadas por nuevas raíces (Hernández, Sánchez y Lazo, 1998). Se puede apreciar (tabla 33) que el sistema de raíces del pastizal pudiera contribuir con el aporte de entre $19-33 \mathrm{Kg} \mathrm{N} / \mathrm{ha}, 3-5 \mathrm{Kg}$ P/ha y 1 - $2 \mathrm{Kg} \mathrm{K/ha} \mathrm{anualmente}$.

Tabla 33. Estimado de N, P y K reciclado anualmente por las raíces de los pastos en la capa de 0-15 cm de profundidad (Kg/ha)

Indicador	Especies		
	C. nlemfuensis	P. maximum	D. annulatum
N	27.5	33.8	19.3
P	4.1	5.6	3.2
K	1.8	2.2	1.3

Los valores de biomasa radicular encontrados en la presente investigación son superiores a los indicados por Laird (1930, citado por Troughton 1957) para varias especies de pastos tropicales en la Florida, pero inferiores a los señalados por Campbell 1945 (citado por Troughton 1957) encontrados para varios pastos en Nueva Zelandia. Varios factores, como la humedad, la temperatura y condiciones físicas del
suelo, la luminosidad, el régimen de defoliación, la perennidad de las raíces, la nutrición mineral y la interacción entre las plantas que crecen juntos, influyen en los valores obtenidos.

La mayor densidad de raíces de un pastizal en los primeros 15 cm de profundidad del suelo había sido demostrado también por Rappaport (1988) al estudiar un numeroso grupo de especies de pastos bajo diferentes condiciones de manejo, aunque Schurman (1980 ${ }^{\text {a }}$) encontró un aumento de esos valores con la edad del pastizal.
Weinmann (1988) estudió los factores que afectan la composición mineral de las raíces de varias especies de pastos de clima templado y, aunque sugirió una composición promedio de $0.56 \% \mathrm{~N}, 0.20 \% \mathrm{P}$ y $0.50 \% \mathrm{~K}$, él recalcó que dichos valores están muy influenciados por la frecuencia de corte ó pastoreo, la fertilización, los factores climáticas y las características genéticas de las especies. Los valores encontrados en cuanto al contenido de NyP en las raíces no se apartan mucho de los señalados por Weinmann, aunque los valores de K son inferiores. De todas formas, serán necesarias más investigaciones para conocer con mayor exactitud la concentración de minerales de las raíces de estas plantas en las variadas condiciones edafoclimáticas y de manejo. Los estimados de N, P y K que aparecen en la tabla 33 deben tomarse con reservas, ya que se consideró que anualmente se renueva un 50% del sistema radicular, aspecto que aún no está totalmente reconocido en nuestras condiciones.
Ya en 1950 Russell señalaba que las raíces jóvenes de pastizales se descomponían rápidamente y desaparecían en 2 años, mientras que en 1941 Doughty había indicado que la tasa de descomposición de las raíces y de las bases foliares de 3 especies de gramíneas estuvieron asociadas con sus relaciones C / N.
La presencia de raíces de gramíneas en estado de descomposición, puede producir una deficiencia temporal de $\mathrm{N} y$, en este sentido, Russell (1950) había encontrado que el sorgo tiene un efecto depresivo en las cosechas que le siguen en la rotación de cultivos. Esto ha sucedido también en las raíces de otras gramíneas (Myers y Anderson 1982; Benedict 1981). Al parecer, las raíces de estas plantas provocan un incremento extremadamente rápido de las bacterias no nitrificantes que utilizan los nitratos disponibles en detrimento de la siguiente cosecha.

Podría asumirse que las raíces de las leguminosas pueden aportar de forma rápida más N al suelo que las raíces de las gramíneas, debido a la menor relación C / N que poseen. No obstante, este aspecto debe ser investigado para conocer con mayor detalle la importancia de las leguminosas en el reciclaje de nutrientes en el ecosistema del pastizal.
Los resultados del presente experimento constituyen los primeros datos en nuestras condiciones cerca del aporte de nutrientes que pueden hacer los sistemas radiculares de los pastos en el ecosistema del pastizal, no obstante, esta temática debería constituir una importante línea de investigación, que tome en consideración todos los aspectos que influyen en este sentido.

Experimento 8. Determinación del aporte de N por el agua de lluvia
El procedimiento seguido en el presente estudio, así como las técnicas de laboratorio usadas para determinar las formas amoniacales y nítricas de N en el agua de lluvia fueron indicados en el Capítulo I.
Resultados
La concentración de N -amoniacal (tabla 34) varió desde 0.1 a $10.1 \mathrm{mg} / \mathrm{L}$, que representa 0.006 a $1.77 \mathrm{Kg} \mathrm{N} / \mathrm{ha}$, respectivamente, Por su parte, la concentración de N en forma de nitratos fluctuó entre 0.002 y $0.224 \mathrm{mg} \mathrm{N} / \mathrm{L}$, o sea, un equivalente a 0.0002 a $0.0299 \mathrm{Kg} \mathrm{N} /$ ha. La relación $\mathrm{NH}_{4} / \mathrm{NO}_{3}$ fue de 324.1 como promedio.

Tabla 34. Concentración y aporte de N en las lluvias durante el período estudiado

Día No.	mm de lluvia		$\mathrm{N}-\mathrm{NH}_{4}$		$\mathrm{~N}-\mathrm{NO}_{3}$	
mg / L	$\mathrm{Kg} / \mathrm{ha}$	mg / L	$\mathrm{Kg} / \mathrm{ha}$			
1	2.0	4.4	0.088	0.051	0.0010	
2	23.0	2.0	0.468	0.069	0.0016	
3	3.0	1.9	0.057	0.090	0.0027	
4	1.3	0.5	0.006	0.065	0.0008	
5	17.6	10.1	1.770	0.170	0.0299	

6	54.0	0.27	0.145	0.056	0.0300
7	14.8	3.05	0.451		
8	8.6	0.6	0.051	0.220	0.0189
9	13.0	0.1	0.023	0.002	0.0002
10	37.2	0.4	0.148	0.006	0.0022
11	4.2	1.75	0.073	0.224	0.0094
Total	178.7		3.270		0.1069
Media		2.27	0.297	0.086	0.0097
DS		2.91	0.534	0.007	0.0017

Los resultados obtenidos indican que la lluvia caída en el período estudiado aportó 1 Kg de N / ha por cada 52.5 mm de lluvia, o sea, cada mm de lluvia contiene $0.019 \mathrm{Kg} / \mathrm{ha}$ de N .

Si se tiene en cuenta que en la región estudiada la lluvia anual (promedio de 10 años) es de 1486.5 mm (Herrera, Losada y Ávila 1977) ésta puede aportar alrededor de 28 Kg N/ha/año.

Se ha señalado que en las regiones tropicales, el aporte de N que hacen las lluvias suele ser tres veces superior a lo que se registra en las regiones de clima templado. Esto sugiere que el estimado de $28 \mathrm{Kg} \mathrm{N} / \mathrm{ha} /$ año encontrado en el presente estudio resulta ser un valor lógico si se tiene en cuenta que en estas últimas regiones las lluvias solo dejan caer un promedio de 10 Kg N/ha/año (FAO 1982).
Nuestros resultados indican que las lluvias pueden aportar importantes cantidades de nitrógeno en nuestras condiciones, las cuales deben ser tomadas en consideración en los estudios sobre el balance de N en los ecosistemas de pastizales.

Principales resultados

1. La biomasa radicular de las pastos C. nlemfuensis vc. panameño, P. maximum vc. likoni y D. annulatum es, como promedio, de $1 \mathrm{Kg} / \mathrm{m}^{2}$, el 65% de la cual se localiza en los primeros 5 cm del perfil del suelo.
2. Como promedio, el aporte anual de nutrientes que hacen las raíces de estos pastos al ecosistema del pastizal fluctúa entre $19-33 \mathrm{Kg} / \mathrm{ha}$ de $\mathrm{N}, 3-5 \mathrm{Kg} / \mathrm{ha}$ de P y $1-2 \mathrm{Kg} / \mathrm{ha}$ de K .
3. Cada mm de lluvia contiene $0.019 \mathrm{Kg} / \mathrm{ha}$ de N , o sea, que aporta al ecosistema 1 $\mathrm{Kg} / \mathrm{ha}$ de N por cada 52.5 mm .

CAPÍTULO V

RECICLAJE DE NUTRIENTES EN SISTEMAS DE PRODUCCIÓN ANIMAL

Introducción

Por lo general, los estudios publicados con relación al reciclaje de los nutrientes en los pastizales, han considerado solamente aspectos aislados de este proceso (p. ej. pérdidas de N gaseoso de las excreciones, tasas de descomposición de la hojarasca del pastizal, etc.) y en algunos casos se han propuesto modelos y programas de simulación para representar con valores este reciclaje, pero de una forma estática y no dinámica, como realmente ocurre.

La necesidad de investigar cómo se produce el reciclaje de los nutrientes en las nuevas tecnologías que plantea la ganadería sostenible es impostergable, para poder manipular este proceso hacia el fin de lograr la estabilidad y la sostenibilidad de los ecosistemas de pastizales.

En los sistemas muy intensivos de producción de leche en Europa y en América, basados en el uso de altas dosis de fertilizantes químicos, los modelos de reciclaje de nutrientes han tomado en cuenta los valores de las pérdidas por lavado y volatilización de N , así como las características hidrofísicas del suelo que influyen en el comportamiento de este nutriente (Jarvis 1993; Scholefield y col. 1991; Smith y Arah 1990).

No obstante, en los sistemas semintensivos de producción de leche y de carne vacuna, abundante en la agricultura de bajos insumos y pobres recursos, el conocimiento del flujo natural de los nutrientes que ocurre dentro de cada finca, resulta de vital importancia para incrementar el reciclaje de los nutrientes y, con ello, lograr producciones animales sostenibles.

El objetivo del presente Capítulo fue, primero, determinar el estado del balance de N, P y K en sistemas de producción de ganado vacuno de engorde, con o sin leguminosa en el pastizal y, segundo, estudiar el valor de las entradas y las salidas de N, P y K en una finca lechera, cuyo pastizal estaba constituido por 60% de pasto estrella (C. nlemfuensis) y 40% de banco de biomasa con P. purpureum cv. CT-115, asociados con leguminosas en un 28% del área.

Experimento 9. Estudio del balance de nitrógeno, fósforo y potasio en sistemas de producción de ganado de carne en pastoreo

Materiales y métodos

Suelo

El experimento se condujo en un suelo del tipo Húmico Calcimórfico Típico Carbonatado (Hernández y col. 2005), cuyas principales características químicas fueron: pH neutro, 6.46% M.O, $72-121$ p.p.m de P y 190-253 p.p.m de K en los 0-12 cm superiores del suelo, con valores muy bajos de M.O (1.2\%) y de K (30-40 p.p.m) por debajo de los 12 cm de profundidad.

Tratamientos:
Se compararon los siguientes sistemas:
A = pastoreo en un pastizal nativo, compuesto principalmente por las especies Sporobolus indicus (70\%), Dichantium annulatum (20\%) y Paspalum notatum (10\%). Comprendió un área de 4 ha, dividida en 4 cuartones y una carga de 2 animales/ha.
$B=$ pastoreo en un pastizal nativo con similar composición botánica que en A, pero con arbustos de la leguminosas Leucaena leucocephala en toda el área, establecida en doble surco espaciados a 3 m . Este sistema ocupó un área de 3 ha, dividida también en 4 cuartones y una carga de 2 animales/ha.
Procedimiento experimental:
El peso vivo inicial de los animales de la raza Cebú fue de $293 \pm 3 \mathrm{Kg}$ en A y $288 \pm 4 \mathrm{Kg}$ en B. En ambos sistemas los animales rotaron 8 veces por cuartón en el año y durante la época seca (diciembre-abril) a los animales se les suministró caña de azúcar con
urea (al 1\%) a voluntad. Los animales dispusieron de agua y sales minerales con libre acceso en el extremo de cada cuartón.

Para el estudio del balance de los nutrientes en cada uno de los sistemas se determinaron los indicadores mencionados en el Capítulo I.

Resultados y discusión

El balance de N, P y K en el sistema A se muestra en la tabla 35. Los animales consumieron 6930 Kg de MS del pastizal, que representó el 55% de la disponibilidad total ofrecida y dejaron de consumir 5678 Kg . Se produjo una extracción de $83 \mathrm{Kg} \mathrm{N}, 17$ Kg P y 60 Kg K por el pasto consumido por los animales. Por su parte, el pasto rechazado removilizó para los rebrotes $9 \mathrm{Kg} \mathrm{N}, 1 \mathrm{Kg} \mathrm{P} \mathrm{y} 10 \mathrm{Kg} \mathrm{K}$, lo cual representó aproximadamente el 20% del contenido de estos elemento en el pasto rechazado.

En este sistema la acumulación anual de hojarasca fue de $1808 \mathrm{Kg} / \mathrm{ha}$, que recicló 14 Kg N, 2 Kg P y 11 Kg K/ha.

Los animales defecaron en total unas 1120 bostas/ha/año, que pesaron 5.6 t/ha base fresca. Estas bostas contribuyeron con un reciclaje interno de $20 \mathrm{Kg} \mathrm{N}, 7 \mathrm{Kg} \mathrm{P}$ y 10 Kg K/ha y cubrieron el 13% del área del pastizal.
La entrada de N por la lluvia fue de $27 \mathrm{Kg} / \mathrm{ha}$, mientras que los alimentos suplementarios que entraron al sistema introdujeron $12 \mathrm{Kg} \mathrm{N}, 3 \mathrm{Kg} \mathrm{P} \mathrm{y} 6 \mathrm{Kg} \mathrm{K} / \mathrm{ha}$. Las bostas presentaron valores de volatilización de N -amoniacal de $9 \mathrm{Kg} / \mathrm{ha}$, mientras que la salida de nutrientes por la ganancia de PV de los animales fue de $5 \mathrm{Kg} \mathrm{N}, 2 \mathrm{Kg} \mathrm{P}$ y 0.5 Kg K/ha.
Como muestra la tabla 35, en el sistema A, el balance entre las entradas y las salidas mostró valores negativos para los 3 nutrientes estudiados.

Tabla 35. Balance de N, P y K en el sistema con pastos naturales

Renglón	Kg/ha		
	N	P	K
Entradas internas y externas en el sistema			
Bostas	20	7	16
Lluvia	27		
Removilizado por el pasto	9	1	10
Por consumo de otros alimentos	12	3	6
Hojarasca	14	2	11
Subtotal	82	13	43
Salidas internas y externas del sistema			
Extraído por el pasto consumido	83	17	60
NH3 volatilizado	9		
Por ganancia de PV	5	2	0.5
Subtotal	97	19	60.5
Balance	-15	-6	-17.5

Por su parte, en la tabla 36 se indica los resultados del balance de los nutrientes en el sistema B, compuesto por pastos naturales con intercalamiento de leucaena en toda el área. En este caso los animales consumieron el 40% del pasto natural ofrecido (3920 kg MS/ha) y el 62% de la leucaena ($3224 \mathrm{~kg} / \mathrm{ha}$). Ocurrió una extracción de $167 \mathrm{~kg} \mathrm{~N}, 8 \mathrm{~kg}$ P y $78 \mathrm{~kg} \mathrm{~K} / \mathrm{ha}$ a través del pasto consumido por los animales, mientras que el pasto removilizó 19 kg de $\mathrm{N}, 1 \mathrm{~kg}$ de P y 9 kg de k / ha a partir de los nutrientes que quedaron en el pasto rechazado. La hojarasca que se acumuló en el pastizal fue de $2100 \mathrm{~kg} / \mathrm{ha}$ (b. seca), que aportó $21 \mathrm{~kg} \mathrm{~N}, 1.5 \mathrm{~kg} \mathrm{P}$ y $16 \mathrm{~kg} \mathrm{~K} / \mathrm{ha}$. Los animales defecaron $6.8 \mathrm{t} / \mathrm{ha}$ de bostas frescas, que reciclaron $30 \mathrm{~kg} \mathrm{~N}, 8 \mathrm{~kg} \mathrm{P}$ y $21 \mathrm{~kg} \mathrm{~K} / \mathrm{ha}$ y cubrieron 14.2% del área del pastizal.

Tabla 36. Balance de N, P y K en el sistema con pastos nativos y leucaena en toda el área

Renglón	$\mathrm{Kg} / \mathrm{ha}$			
	Entradas internas y externas en el sistema			
Bostas		30	8	

Subtotal	189	11	79
Balance	+16	+1	-28

Se estimó en $100 \mathrm{Kg} /$ ha el N que entró en el sistema por la fijación biológica de N por la leguminosa y en $8 \mathrm{Kg} \mathrm{N}, 2 \mathrm{Kg} \mathrm{P}$ y 5 Kg K los nutrientes que aportaron los alimentos suplementados a los animales durante la época de seca.

Salió de este sistema 10 Kg de $\mathrm{N}-\mathrm{NH} 3$ volatilizado por las bostas, así como $12 \mathrm{Kg} \mathrm{N}, 3$ Kg P y 1 Kg K por la ganancia de peso vivo de los animales.

La leucaena hizo una contribución muy importante al balance positivo de N en el sistema B, que influyó favorablemente en la obtención de una mayor ganancia de peso vivo de los animales (Castillo y col. 1988). Esto contrastó fuertemente con el desbalance de N, P y K encontrado en el sistema A (sin leucaena), que presentó una menor producción animal.
En el sistema B, la leucaena representó el 35% de la producción total de MS del pastizal, lo cual indica que dicha proporción resulta un valor adecuado para lograr un balance favorable de N en este sistema. Esto concuerda bien con las proporciones propuestas por diversos autores para otras leguminosas (Simpson y Stobbs 1981 Thomas 1982 y Cadish y col. 1994), quienes recomiendan mantener rangos entre 30 50% de disponibilidad de MS de leguminosas en los pastizales.

Este efecto favorable de las leguminosas en los ecosistemas de pastizales no solo se debe al aporte de N a través de la fijación biológica del N atmosférico, sino también a la entrada importante de nutrientes mediante la descomposición de la hojarasca que ellas producen (Thomas y Asakawa 1993b).

La hojaraca que produjo la combinación de pasto nativo/leucaena, proporcionó mayor valor de N en el sistema, comparado con el pastizal compuesto por pastos nativos solamente (21 vs $14 \mathrm{Kg} \mathrm{N} / \mathrm{ha}$ /año).
Esto se debe a la hojarasca que aportó la leucaena, pues se ha reconocido que el alto contenido de N en la misma (2.2% en nuestro caso), favorece el ataque rápido por los organismos del suelo, con una descomposición muy eficiente de su materia orgánica, lo que acelera el proceso del reciclaje de N por esta vía.

En el pastizal con leucaena las bostas de los animales reciclaron más N que en el pastizal con pastos nativos solos, lo cual se debió, sin dudas, al mayor consumo de N por los animales en el primer caso. Se ha señalado que existe una relación positiva entre el contenido de N en el alimento que consume el ganado y el contenido de N en las bostas. No obstante, el N volatilizado de éstas fue similar en los dos sistemas (± 10 $\mathrm{Kg} / \mathrm{ha}$), que representó, aproximadamente, el 25% del N contenido inicialmente en las bostas depositadas.
De igual forma, el valor de N removilizado por el pasto fue mayor en el sistema con leucaena, lo cual se explica por el mayor contenido de N en la gramínea que creció en dicho sistema. Este N removilizado favorece el rebrote y la rápida recuperación de la gramínea.
La entrada de N al sistema por el agua de lluvia debe ser tomada en cuenta en los estudios de balance de N en los sistemas agrícolas. En el presente estudio, el valor encontrado por esta vía fue parecido a lo encontrado por Cuesta y Crespo (1990) en la misma región. En este sentido, Goulding y Atkins (1990) citados por Scholefield y col. (1991) encontraron, en regiones geográficas de Inglaterra, valores entre 25 y 15 Kg N/ha/año por las lluvias.

El N consumido por el ganado en el sistema con leucaena fue prácticamente el doble que en el otro sistema (pastos nativos sin leucaena). Esto sucedió porque la producción de biomasa y el contenido de N en ésta fueron mayores en el pastizal asociado, lo cual repercutió en una mayor producción animal.
La mayor ganancia de peso vivo de los animales en el sistema con leucaena produjo una mayor salida de N , de modo que con pastos nativos este valor fue solo el 48% de lo alcanzado en el sistema con leucaena.

Aunque en el sistema con leucaena se logró un balance favorable de N y de P , el K mostró un balance negativo. Esto pareció deberse a la mayor extracción de este elemento debido a la mayor producción de biomasa y al hecho de no haberse considerado la entrada de potasio que hacen las micciones del ganado, que en ocasiones es considerable. En este último sentido, Till 1981 (citado por Flores 1994) encontró valores de $115 \mathrm{Kg} / \mathrm{ha}$ de K reciclado por la orina anualmente, en un sistema con vacas lecheras en pastoreo rotacional. Esto indica que el balance de K puede
considerarse resuelto si se contempla, además, la cantidad que recicla la orina de los animales en pastoreo.
Además de los resultados anteriores, las investigaciones de Rodríguez y col. (2003) en este mismo sistema, comprobaron que la presencia de Leucaena leucocephala favoreció la actividad biológica del suelo, manifestado por altos valores de biomasa de la macrofauna, debido a la mayor cantidad de hojarasca de calidad y un microambiente favorable para la actividad biológica, a causa de un mayor contenido de humedad en el suelo.

Los resultados de la presente investigación demostraron que la presencia de la leucaena en el pastizal, en una proporción tal que contribuya con el 35% del rendimiento total de biomasa, mantiene un balance positivo de N y P en el sistema y produce un aumento en la producción animal.

Experimento 10. Balance de N, P y K en un sistema de producción de leche con pastizal de C. nlemfuensis y banco de biomasa de Pennisetum purpureum cv. CT-115

Materiales y métodos

La finca lechera ocupó un área de 52.32 ha (ver la próxima tabla) donde predominó un suelo Fersialítico Pardo Rojizo mullido éutrico (Hernández y col. 2005). El pastizal lo componía el pasto estrella (60% del área) y un banco de biomasa con P. purpureum vc. CT-115 en el 40% del área restante. En el 28 \% del área que ocupaba el pasto estrella se asociaron las leguminosas leucaena (Leucena leucocephala) y gandul (Cajanus cajan (L.) Millsp). El banco de biomasa se destinó, fundamentalmente, para la alimentación de las vacas en la época de seca, según la tecnología propuesta por Martínez (1996).

Las características generales de la finca lechera se muestra en la siguiente tabla:

Area agrícola : 52.39há			
Tipo de suelo : Fersialítico Pardo Rojizo mullido éutrico - drenaje regular			
		Número	UGM ${ }^{(1)}$
	Vacas lechera	114	114
	Novillas de reemplazo	35	23
	Terneros	24	2
Producción total de leche	100000 L total		
	877 L/vaca/año		
Producción de pastos ${ }^{(2)}$	1500 t MS	1500 t	
Otros alimentos:			
Concentrados	387 kg/vaca (87\% MS)	38.3 t	
Miel-urea	342.1 kg/vaca (10\% MS)	3.9 t	
Bagacillo	284.6 kg/vaca ó novilla	22.0 t	
(52\% MS)			
Ensilaje	553.7 kg/vaca ó novilla	15.6 t	
(19\% MS)			
Caña de azúcar	120.8 kg/vaca ó novilla (26\% MS)	4.7 t	
Forraje	$53.6 \mathrm{~kg} / \mathrm{vaca}$ ó novilla (28\% MS)	2.2 t	
Ganancia de peso vivo	16.8 t		

(1) Disponibilidad total de MS (996 t en el área de C. nlemfuensis + 554 t en el área de P. purpureum vc. King grass CT-115.

El rebaño lechero (en su mayoría de la raza Siboney de Cuba) lo componían 114 vacas y 35 novillas de reemplazo como promedio, estas últimas equivalentes a 13 UGM. Se obtuvo en el año una producción de leche de 877 litros por vaca (total de 100000 L) y los animales consumieron 825 t MS de pastos (55% de la disponibilidad total) y 75.1 t MS de otros alimentos suplementarios (concentrados, ensilaje, bagacillo y caña de azúcar). Se aplicó 660 Kg N (1.43 t de urea) en el área del Banco de Biomasa.
Los animales rotaron 10 veces en el área de C. nlemfuensis y 3 veces en al Banco de Biomasa.
Se determinó por rotación la disponibilidad y rechazo del pasto por medio de 40 marcos distribuidos al azar a la entrada de los animales. En cada caso el pasto estrella fue cortado con cuchillo a una altura de 10 cm del suelo, mientras que el CT-115 se cortó a una altura similar a la quedó en el rechazo de la rotación anterior.

En el Capítulo I se describieron los procedimientos utilizados para la determinación de los distintos indicadores que fueron utilizados para el cálculo del balance de los nutrientes en la finca.

Resultados y discusión

En las figuras 8, 9 y 10 se presentan los valores del reciclaje de N, P y K en el sistema estudiado. En el sistema total los valores indican balances negativos para el N (-28 $\mathrm{Kg} / \mathrm{ha}$), para el $P(-11 \mathrm{Kg} / \mathrm{ha})$ y para el $\mathrm{K}(-39 \mathrm{Kg} / \mathrm{ha})$, mientras que en el suelo se encontraron desbalances de $-103 \mathrm{Kg} / \mathrm{ha}$ de $\mathrm{N},-22 \mathrm{Kg} / \mathrm{ha}$ de P y $-76 \mathrm{Kg} / \mathrm{ha}$ de K .

Figura I. Flujo del S
Los números entre paréntessis indican kg háaño

Figura 8. Reciclaje de N en el sistema

Figura 9. Reciclaje de P en el sistema

El pastizal extrajo del suelo $320 \mathrm{Kg} / \mathrm{ha}$ de N, $57 \mathrm{Kg} / \mathrm{ha}$ de P y $237 \mathrm{Kg} / \mathrm{ha}$ de K, de los cuales cerca de 37\% correspondieron al área del banco de biomasa de CT-115. Estos valores de extracción de nutrientes son, en general, mayores que los señalados para varias especies de pastos en el país (Paretas, 1976; Herrera 1981 y Ramos, 1982).

El porcentaje promedio de utilización del pasto por los animales fue de 55%, lo cual indica que del total de nutrientes extraídos del suelo por el pasto, $176 \mathrm{Kg} / \mathrm{ha}$ de $\mathrm{N}, 31$ Kg/ha de P y $130 \mathrm{Kg} / \mathrm{ha}$ de K, fueron consumidos por el ganado. Estas cantidades, sumadas al consumo de nutrientes a partir de los alimentos suplementarios, resultaron en consumos totales de $192 \mathrm{Kg} / \mathrm{ha}$ de $\mathrm{N}, 38 \mathrm{Kg} / \mathrm{ha}$ de P y $156 \mathrm{Kg} / \mathrm{ha}$ de K .

De estas cantidades totales de nutrientes consumidos, los animales utilizaron solamente $16 \mathrm{Kg} / \mathrm{ha}$ de $\mathrm{N}, 5 \mathrm{Kg} / \mathrm{ha}$ de P y $4 \mathrm{Kg} / \mathrm{ha}$ de K / ha para la producción de leche, ganancia de PV y producción de terneros, el resto fue de nuevo retornado al sistema mediante las excreciones. En este sentido, más del 90% del N y del K y alrededor del 81% del P consumido por los animales fue reciclado de nuevo al sistema a través de las excreciones. Estos resultados coinciden con los señalados por Haynes y Williams (1939), Jarvis (1993) y Cadish y col. (1994).

No obstante, el 40% del total de las excreciones ocurrió en las naves de sombra y de ordeño de la vaquería y, por tanto, los nutrientes contenidos en ellas no reciclaron al ecosistema del pastizal. Esto constituyó la principal causa del desbalance de los 3 nutrientes, aunque se encontró que en el sistema en general, incluso si se hubiera hecho la devolución completa de las excretas al pastizal, no se hubiera resuelto totalmente el desbalance que ocurrió en el suelo.

Del total de N reciclado por las excreciones en el pastizal ($11 \mathrm{Kg} / \mathrm{ha}$) se volatilizó un 10\% en forma de amoníaco. Este porcentaje es mayor que lo encontrado por Crespo y col. (1997), quienes señalaron valores entre 3-5\%. Según Rodríguez y col. (1998) una elevada carga animal causa mayor valor de amoníaco volatilizado en el pastizal, debido a que el pisoteo constante sobre las bostas, las expone más fácilmente a la acción de los factores climáticos que favorecen la volatilización.
Importante mecanismo de reciclaje interno de nutrientes, sobre todo para el nitrógeno y el potasio, lo constituye su removilización en el pasto rechazado, para ser reutilizados
nuevamente en la actividad del rebrote. Esta vía representó valores de $36 \mathrm{Kg} \mathrm{N} / \mathrm{ha}$, 5 Kg P/ha y 34 Kg K/ha. Esto es de particular interés en las plantas de CT-115 en el banco de biomasa, ya que los tallos que quedan después del pastoreo re movilizan una importante cantidad de estos nutrientes, los cuales, junto con el agua que conservan en este órgano, garantizan un favorable rebrote de este pasto (Martínez, 1996).
Otra vía de reciclaje interno en el sistema lo constituye la hojarasca que produce el pastizal. La producción promedio fue de $2220 \mathrm{Kg} \mathrm{MS/ha} ,\mathrm{que} \mathrm{retornó} \mathrm{alrededor} \mathrm{de} 11$ $\mathrm{Kg} \mathrm{N} / \mathrm{ha}$, 2 Kg P/ha y $9 \mathrm{Kg} \mathrm{K} / \mathrm{ha}$. Estos valores son algo mayores que lo encontrado por Crespo y col. (1998) en pastizales nativos con ganado de engorda, quienes señalaron producciones de $1800 \mathrm{Kg} \mathrm{MS} / \mathrm{ha}$. En el presente estudio, cerca del 60% de la hojarasca producida correspondió al área de CT-115.
La entrada de N por concepto de la lluvia mostró un valor de interés para el sistema. El valor de 27 Kg N/ha encontrado por esta vía fue muy parecido a lo señalado por Cuesta y Crespo (1990) para esta misma región.
Una mayor proporción de leguminosas en el pastizal hubiera propiciado mayor entrada de N en el sistema. En este sentido, Crespo y col. (1998) encontraron que la leucaena fijó alrededor de 164 Kg N/ha cuando ocupó el 100\% del área de una sabana nativa con ganado de engorda.

Figura 3. Flujo del K
L.os números entre parénlesis indican kg hà año

Figura 10. Reciclaje de K en el sistema

Nuestros resultados indicaron que, para similar sistema al aquí empleado, incluso con la devolución total al pastizal de las excretas acumuladas en las naves de la vaquería, no se hubiera resuelto totalmente un balance favorable de los tres nutrientes en el suelo.
En próximas investigaciones será necesario estudiar aspectos de mucho interés en esta temática, tales como el flujo de los nutrientes a través de la escorrentía del agua, la desnitrificación, la volatilización, la variación de la MO del suelo, la mineralización y las propiedades hidrofísicas del suelo, lo cual contribuirá a lograr mejor entendimiento del ciclo y del estado del balance de los nutrientes en diferentes ecosistemas ganaderos.

Principales resultados

1. En el sistema de producción de ganado de carne, con carga de 2 animales/ha, el balance de N, P y K resulta negativo en el pastizal compuesto por gramíneas nativas solamente, pero con leucaena distribuida en toda el área, el balance de N y P resulta positivo.
2. En la finca lechera, cuya área de pastizal la ocupan 40% de Banco de Biomasa con P. purpureum vc. CT-115 y 60% con C. lenmfuensis (de la cual el 28% se encuentra intercalada con L. leucocephala y C. cajan) el sistema presenta balances negativos de N, P y K..

CAPÍTULO VI

MODELACIÓN DEL RECICLAJE DE LOS NUTRIENTES

Introducción

En la actividad de la ganadería se han desarrollado varios modelos que han contemplado aspectos muy valiosos para dirigir el funcionamiento de los sistemas, tales como: utilización del alimento, la energía, el consumo, la digestibilidad y el peso vivo de diferentes categorías de animales (Freer y col. 1970; Forbes, 1977 y Assis y France, 1983). No obstante, son escasos los modelos desarrollados que contemplen la interrelación entre los tres componentes fundamentales del sistema ganadero (suelo planta - animal).

El objetivo del presente Capítulo es mostrar el desarrollo de un Modelo de simulación que estima el balance de los nutrientes en el ecosistema ganadero y discutir los resultados obtenidos con la aplicación del Modelo en 9 fincas ganaderas de la provincia de La Habana.

Desarrollo
Se tomaron en cuenta los datos obtenidos en los Capítulos anteriores de la presente tesis y los de otras investigaciones desarrolladas en el país, para trabajar en el desarrollo de un Software o "Modelo dinámico", que simula el reciclaje de N, P y K en el sistema suelo-pasto-animal, aplicable a cualquier sistema de producción de ganado vacuno.

El análisis, diseño y puesta en práctica del modelo, además de considerar los requerimientos predefinidos en las especificaciones de un modelo de simulación prevé que, con su aplicación, se puedan iniciar nuevos estudios sobre el reciclaje de los nutrientes, utilizando el mismo programa como una herramienta de trabajo. Esto permitiría el perfeccionamiento y la profundización del conocimiento ya establecido sobre esta temática, y al mismo tiempo, lograría un mayor grado de ajuste del modelo a las particularidades que presenta cada unidad ganadera donde sea aplicado.

Este modelo computacional se desarrolla acorde con las convenciones de la ingeniería de software, con una estructura precisa en el análisis, diseño, programación y mantenimiento del sistema, con énfasis especial en tres aspectos de la calidad, que son: los atributos de operación, la facilidad de cambios en el diseño y la flexibilidad de
implantación. Se evalúa qué plataforma de desarrollo y lenguaje de programación se debe utilizar, considerando el usuario final del sistema, el equipamiento disponible y las futuras tendencias de estas tecnologías de punta.

La estrategia para la validación del modelo se indica en la figura 11.
Figura 11. Estrategia general para la validación del modelo.

Por la propia naturaleza de este modelo computacional, el proceso de validación no es conclusivo, ya que desde su propia concepción han sido previstos cambios, de los cuales no se conocen detalles.

Se seleccionó la plataforma Windows 95 entre los sistemas operativos más usados en microcomputación, por ser el más difundido en el presente. El mismo proporciona un ambiente gráfico basado en la utilización de ventanas, permite la multitarea y los
usuarios pueden acceder fácilmente a cualquiera de las aplicaciones que estén en ejecución, lo cual permite una potente comunicación entre aplicaciones.

Para la programación se utiliza el Borland Delphi versión 4.0, lenguaje de cuarta generación, con un compilador que genera aplicaciones de tipo cliente/servidor de 32 bits y brinda grandes facilidades para el desarrollo de aplicaciones de propósitos generales, utiliza una programación visual basada en una metodología orientada a objeto y hace uso de un grupo de bibliotecas de clases, que proveen al programador de un grupo de objetos y componentes visuales, que hace más rápida y sencilla la programación y el mantenimiento de los sistemas.

El prototipo obtenido es del tipo "evolucionante", pues constituye la aplicación inicial de una nueva metodología, que prevé un futuro proceso de refinamiento, partiendo de sucesivas validaciones.

Generalidades del modelo
El programa está diseñado para simular el balance anual de nitrógeno, fósforo y potasio en cualquier unidad de producción vacuna, ya sea vaquería, centro de ceba, granja o un sistema productivo más abarcador, con los siguientes requerimientos mínimos:

1. conocimiento de la estructura y el comportamiento del rebaño durante el último año.
2. conocimiento de las áreas de pastoreo y la composición de especies del pastizal.

La información necesaria para la utilización del programa está determinado por las características particulares del proceso productivo en la unidad objeto de estudio, lo cual determinará cuáles variables de entrada deben ser conocidas por el usuario, quedando la modificación de las variables de estado a la voluntad y al conocimiento de quien utiliza el programa. El lector encontrará mayor información sobre los requerimientos del programa en el caso de estudio que presentamos.

Estructura del Programa

El programa tiene seis opciones principales: Archivo, Edición, Balance, Base de Datos, Ventana y Ayuda, que definen otros submenús anidados, que cumplen con todos los requerimientos definidos en el análisis y diseño del sistema y que tiene en cuenta las características estándares de las aplicaciones de tipo Windows 95.

Variables de estado del programa
El modelo despliega una ventana de edición para las variables de estado definidas previamente, que permite cambiar valores, restaurar las predefinidas en el modelo o restablecer nuevos valores. Estas variables pueden ser editadas según la información del usuario, pero esto no se requiere para explotar el programa.
Es importante señalar que la ventana de edición para cada variante está dividida en varios paneles. Uno de ellos para las variables relacionadas con la composición del rebaño y la producción animal, la ganancia o pérdida de peso vivo, la categoría, la producción de leche, el número de nacimientos y otras variables, y el otro panel (llamado Pastos) incluye las variables relacionadas con las áreas de pastoreo, utilización de los pastos, rendimiento, categoría productiva del suelo, régimen de lluvias y especies de pastos.
En el panel Excreciones están agrupadas las variables relacionadas con las bostas y la orina del ganado. En el caso de la Suplementación se presenta una caja de selección (Check bok), con trece entradas, que se corresponden con las categorías de suplementos utilizados, de modo que al seleccionar una entrada se despliega una ventana de edición tipo tabla (Grip) con los artículos de la correspondiente base de datos. De forma similar sucede con el panel Fertilización.
"Balance" es la tercera opción del menú principal y se habilita solo cuando existe una variante activa con toda la información validada, en cuyo caso se despliega una ventana de salida de edición (TMemo) que contendrá el reporte del balance anual de N , P y K, al nivel de cada componente en particular (suelo-pasto-animal) y al nivel del sistema en general. Los resultados del reporte dependerán de la exactitud de los valores asignados a las variables de la variante activa.
La "Base de datos" brinda la posibilidad de actualizar las bases de datos (BDs), es decir, modificar, añadir o eliminar artículos de los archivos, de manera que cada usuario pueda personalizar estas BDs, ajustándolas a las características reales de su unidad productiva (ej. tipo y composición de suplementos; aprovechamiento de los pastos por los animales y eficiencia de utilización de los fertilizantes).

Validación del Modelo
En la fase de validación se efectuaron, primeramente, comprobaciones de cada uno de los submodelos que lo conforman, utilizando para ello los datos de las investigaciones básicas desarrolladas en el Instituto de Ciencia Animal y de resultados informados en otros centros de investigación, tanto nacional como extranjeras, situados en países de clima similar al nuestro.

Los errores detectados en esta primera fase fueron corregidos y comparados nuevamente, hasta la obtención de resultados equivalentes. Después de obtener una primera versión del programa, se utilizaron los propios datos de la etapa anterior y el Modelo produjo los resultados esperados. En esta fase sólo fueron encontradas deficiencias en el diseño de las interfases del programa con el usuario y los algoritmos de detección de errores en la edición de los datos de entrada, que se incluyeron en el diseño del software.

Todas las deficiencias encontradas en el diseño del programa fueron erradicadas y se pasó a la comprobación experimental del software, para lo cual se utilizaron varias unidades productivas que contaban con la información necesaria. Los resultados iniciales de estas comprobaciones permitieron hallar deficiencias en la concepción de la simulación, que fueron corregidas posteriormente y posibilitaron el ciclo completo de la validación, con resultados positivos.

En el Anexo 1 de esta Tesis se presenta el Manual de Usuario para el manejo del Programa.

Resultados obtenidos con la aplicación del software "RECICLAJE" en vaquerías lecheras comerciales.

A nivel mundial, se han realizado valoraciones acerca de la importancia de la utilización de la modelación en los ecosistemas de pastizales (Thornley, 2001) y se han propuesto modelos ecológicos y socioeconómicos para la toma de decisiones por los productores, con el objetivo de obtener mayor productividad en sus fincas (Hollman, 2001).
El objetivo de la presente sección es discutir los resultados que se obtuvieron con la aplicación del software "RECICLAJE" en diferentes unidades pecuarias de la región occidental de Cuba.

En la tabla 37 se muestra el área agrícola, la carga animal promedio, la producción anual de leche, el tipo de suelo predominante y los tipos y cantidad anual de alimentos suplementarios suministrados a los animales durante un año, en cada una de las 9 vaquerías seleccionadas para el estudio. Los datos indican que existieron amplias diferencias entre las fincas en los indicadores considerados.

En el Modelo se toma en cuenta los diferentes aspectos del reciclaje de los nutrientes en los componentes suelo-pasto-animal de la finca, con mayor énfasis en el papel central de los animales por su influencia en el retorno de cantidades significativas de nutrientes a través de sus excreciones y, además, como principal extractor de nutrientes del suelo a través del consumo de pasto. Además, se contemplan otras vías importantes del reciclaje, tales como: la hojarasca, la fijación biológica del N, el sistema radicular de los pastos y el aporte de las lluvias, así como la entrada de nutrientes al ecosistema por el suministro de otros alimentos suplementarios a los animales.

Tabla 37. Características de las unidades lecheras en estudio
$\left.\begin{array}{|c|c|l|l|l|l|l|}\hline \text { Unidad } & \begin{array}{c}\text { Área } \\ \text { agrícol } \\ \text { a, ha }\end{array} & \begin{array}{l}\text { Principales } \\ \text { especies de } \\ \text { pastos }\end{array} & \begin{array}{l}\text { Carga } \\ \text { anima. } \\ \text { UGM/ } \\ \text { ha }\end{array} & \begin{array}{l}\text { Producció } \\ n \text { anual } \\ \text { de leche, } \\ \text { Kg }\end{array} & \begin{array}{l}\text { Tipo de } \\ \text { suelo } \\ \text { (Hernánde } \\ \text { z y col. } \\ \text { 2005) }\end{array} & \begin{array}{l}\text { Suplementos } \\ \text { suministrados }\end{array} \\ \hline 1 & 44 & \begin{array}{l}\text { Estrella (C. } \\ \text { nlemfuensis), } \\ \text { saca cebo (P. } \\ \text { notatum), y } \\ \text { guinea (P. } \\ \text { maximum) }\end{array} & 4.1 & 132775 & \begin{array}{l}\text { Ferralítico } \\ \text { Rojo típico } \\ \text { éutrico }\end{array} & \begin{array}{l}\text { Concentrado } \\ \text { comercial (34 } \\ \text { t); miel (41.8 } \\ \text { t); forrajes } \\ (481 ~ t) ; ~ s o y a ~\end{array} \\ (0.8 \mathrm{t})\end{array}\right]$

		leucaena (L. leucocephala)				
3	59	Estrella, saca cebo, banco de proteína con leucaena y banco de biomasa con CT-115 (Pennisetum purpureum)	2.9	155278	Húmico Calcimórfic - típico carbonatad o	Concentrado comercial (20.2t); miel (14 t)
4	42	Estrella, guinea, saca cebo y espartillo	3.1	120118	Ferralítico Rojo típico éutrico	Concentrado comercial (41 t); forrajes (72 t)
5	30	Estrella, saca cebo y espartillo	2.5	712335	Ferralítico Rojo típico éutrico	Concentrado comercial (50.4 t); soya (3.7 t); girsol (0.7t)
6	44.7	Estrella, bermuda (Cynodon sp.), pangola (Digitaria decumbens), espartillo y saca cebo	2.2	81162	Ferralítico Rojo típico éutrico	Granos de oleaginosas $(1 \quad$ t); Concentrado comercial $(31.9$ t); tortas y harinas protéicas $(0.2 t)$
7	30.18	Saca cebo	3.6	188025	Pardo Cálcico	

						t)
8		Estrella, guinea, saco cebo espartillo y	-		Ferralítico Rojo típico éutrico	Concentrado comercial, miel (14 t)
$9^{\text {a }}$	55.51	Guinea, banco de proteína con leucaena	2.0	139889	Pardo Cálcico	Concentrado comercial (10 t); soya (4.5 t); urea (0.96 t); girasol (13 t); bagacillo $(20.2$ t); cítrico (72.59 t); ensilaje $(2.65 \mathrm{t})$

${ }^{\text {a }}$ Se realizó una fertilización con 2 t/ha/año de urea
Además de evaluar la condición que existe en cada unidad de producción, el programa permite simular también, bajo diferentes circunstancias, nuevas vías para mejorar el reciclaje de los nutrientes, según propongan los usuarios. Estas pueden realizarse por la adición de fertilizantes, disminución de la carga animal, siembra de especies leguminosas en el pastizal, entre otras muchas opciones.
Para correr el programa se estimó conveniente obtener la información necesaria de cada una de las unidades, correspondiente al último año de producción. Dicha información contempló, para cada componente del sistema, la siguiente información:

Componente animal	Componente pasto	Componente suelo
Cantidad de animales (según las categoría)	Área total de la unidad	Tipo de suelo
Producción anual de leche	Área del pastizal	Precipitaciones
Nacimientos en el año	Tipos de pastos presentes (especies, área que ocupan)	Fertilización (tipo de abono, dosis y área aplicada)
Muertes y ventas	Cantidad de forrajes o suplementos suministrados	

Para la determinación del tipo de suelo se tuvo en cuenta la versión de la última clasificación genética de los suelos de Cuba de Hernández y col. (2005). Generalmente, en todas las fincas lecheras, los animales pastorearon entre 14 y 16 hrs diarias y permanecieron en las naves de sombra y sala de ordeño durante 8 ó 10 hrs . Las vacas se ordeñaron 2 veces al día, a las 5:00 a.m y 4:00 p.m, y permanecieron en las naves de sombra de 10:00 a.m. a 5:00 p.m. En las naves se les ofreció agua y sales minerales ad libitum. Se suministró concentrado comercial a las vacas en ordeño, a razón de 1 a $2.5 \mathrm{Kg} / \mathrm{vaca} /$ día y se dividió dicha cantidad en partes iguales en ambos ordeños. Durante la estación seca del año se ofreció como alimento suplementario, en las naves, una dieta muy variada de diferentes forrajes (caña de azúcar, pastos, king grass), piensos y subproductos de la asgroindustria azucarera.

Resultados y discusión

Balance de N, P y K en el suelo y en el sistema de cada finca

En el suelo de todas las fincas el balance de P resultó negativo, mientras que el de K fue negativo, excepto en la 7 , y el de N resultó negativo en la 1, 2, 3, 4 y 9 (tabla 38). Por otra parte, al nivel de cada finca (sistema), el balance de P fue negativo, excepto en la 8 , mientras que el de K también fue negativo en todas, excepto en la 7 , pero el balance de N resultó positivo en todas las unidades.

Tabla 38. Balance de N, P y K en el suelo y a nivel del sistema de cada finca ganadera.

Vaquería	Balance, Kg/ha			
	Componente	N	P	K
1	Suelo Sistema	$\begin{gathered} -16.74 \\ 21.93 \end{gathered}$	$\begin{aligned} & -8.34 \\ & -1.38 \end{aligned}$	$\begin{aligned} & -76.12 \\ & -33.84 \end{aligned}$
2	Suelo Sistema	$\begin{gathered} \hline-65.80 \\ 17.93 \end{gathered}$	$\begin{gathered} \hline-17.23 \\ -1.28 \end{gathered}$	$\begin{gathered} \hline-133.77 \\ -50.01 \end{gathered}$
3	Suelo Sistema	$\begin{gathered} -22.16 \\ 11.25 \end{gathered}$	$\begin{aligned} & -9.80 \\ & -4.10 \end{aligned}$	$\begin{aligned} & -64.08 \\ & -28.33 \end{aligned}$
4	Suelo Sistema	$\begin{gathered} \hline-11.27 \\ 18.92 \end{gathered}$	$\begin{aligned} & \hline-9.64 \\ & -2.97 \end{aligned}$	$\begin{aligned} & \hline-54.17 \\ & -24.45 \end{aligned}$
5	Suelo Sistema	$\begin{aligned} & \hline 111.90 \\ & 128.59 \end{aligned}$	$\begin{aligned} & -3.27 \\ & -0.11 \end{aligned}$	$\begin{aligned} & -22.86 \\ & -11.89 \end{aligned}$
6	Suelo Sistema	$\begin{aligned} & 427.31 \\ & 454.20 \end{aligned}$	$\begin{aligned} & \hline-8.06 \\ & -2.21 \end{aligned}$	$\begin{gathered} \hline-20.61 \\ 4.85 \end{gathered}$
7	Suelo Sistema	$\begin{gathered} 99.30 \\ 160.84 \end{gathered}$	$\begin{gathered} -14.93 \\ -7.83 \end{gathered}$	$\begin{aligned} & 107.67 \\ & -46.33 \end{aligned}$
8	Suelo Sistema	$\begin{gathered} 49.24 \\ 117.37 \end{gathered}$	$\begin{aligned} & \hline-8.46 \\ & 26.48 \end{aligned}$	$\begin{gathered} \hline-17.01 \\ -4.32 \end{gathered}$
9	Suelo Sistema	$\begin{array}{r} \hline-14.4 \\ 13.4 \end{array}$	$\begin{aligned} & -6.8 \\ & -1.0 \end{aligned}$	$\begin{aligned} & -52.3 \\ & -23.2 \end{aligned}$

El balance negativo de P, tanto en el suelo como a nivel de la finca, pudo estar relacionado con las características que muestra el ciclo de este nutriente. En los pastizales, la principal vía de retorno de P ocurre principalmente a través de las
excretas de los animales, por lo cual, el retorno directo de las mismas al ecosistema de pastizal, debe contribuir, de forma significativa, a la disminución de su déficit. El contenido de P en las excretas está fuertemente correlacionado con el consumo del mismo por el animal y por tanto, con su contenido en la dieta.

Se puede considerar que la extracción de P por los pastos constituye una de las principales salidas de este nutriente del suelo, principalmente en el caso de las especies leguminosas. Otro aspecto a considerar es que, la baja disponibilidad y movilidad de este nutriente en los suelos (deficiencia de nutrientes y procesos de fijación) constituyen factores limitantes que no permiten que las plantas lo asimilen eficientemente. Las micorrizas permiten aumentar el área de exploración de las raíces en el suelo, permitiendo una mayor zona de contacto y, por tanto, de absorción de nutrientes y agua, lo cual favorece a las plantas que establecen relaciones simbióticas con ellas (Crespo Flores y col. 2010), por lo que su aplicación en estos sistemas sería de gran utilidad para lograr disminuir la deficiencia de este nutriente.

Las excreciones de los animales representaron el mayor retorno de N en el suelo (entre 50 - 60\% del total) en la mayoría de las fincas (tabla 39), mientras que la fertilización y la entrada por la fijación biológica de N atmosférico en las unidades 2, 3 y 9 representaron porcentajes de interés.

Por otra parte, el porcentaje que representó cada una de las diferentes vías de entrada y salida de N en las fincas se muestra en la tabla 40. Como se aprecia, los alimentos suplementarios y la lluvia presentaron los mayores porcentajes (generalmente entre el 30 y 90%), mientras que el N fijado simbióticamente tuvo una participación importante en las fincas en las que la leucaena estuvo presente.

Tabla 39. Porcentaje que representaron las diferentes vías de entrada de N en el suelo de las fincas

Indicadores	Fincas								
	1	2	3	4	5	6	7	8	9
Por las lluvias	30.58	15.92	33.97	37.97	35.60	41.16	14.99	5.12	8.65
Por la acumulación de hojarasca	1.03	1.34	1.23	1.01	2.00	0.83	0.15	0.11	0.18
Por el N fijado simbióticamente	0	10.72	10.54	0	0	0	0	0	3.99
Por excreciones	68.37	71.99	54.24	61.01	62.30	58.0	65.09	7.04	23.15
Por aplicación del fertilizante	0	0	0	0	0	0	0	0	30.00

El efecto beneficioso de las plantas leguminosas arbóreas en el reciclaje de los nutrientes en los ecosistemas de pastizales se ha encontrado en diferentes investigaciones. En las fincas donde estaba presente la leucaena, la entrada de N por la fijación biológica influyó favorablemente en el reciclaje, aunque se considera que, además, en el retorno de N al sistema es necesario considerar la contribución que hace su hojarasca, ya que esta especie posee un alto contenido de N (2.00-2.50\%).
De forma general, se observó un desbalance de P en las fincas estudiadas, lo cual es necesario tener en cuenta para recomendar su aplicación, con vistas a mantener la estabilidad de los sistemas. También el K mostró desbalances en la mayoría de los casos y fue interesante encontrar que el balance de N fue favorable en aquellas fincas que cuentan con leucaena y disponen de algunas cantidades de fertilizante nitrogenado.
El programa demostró que las excreciones de los animales constituyen una de las principales fuentes de entrada de nutrientes al suelo, aunque se comprobó que el
mayor porcentaje de salida del ecosistema ocurre por la acumulación de las excretas en las instalaciones de la lechería, y que no fueron devueltas al pastizal. De ahí la necesidad de recuperarlas para devolverlas nuevamente al pastizal.

Tabla 40. Porcentaje que representaron las diferentes vías de entrada y salida de N en el sistema general de las fincas

Indicadores	Fincas								
	1	2	3	4	5	6	7	8	9
\% que representaron las diferentes vías de entrada									
Por las lluvias	36.28	22.17	48.78	44.43	11.70	54.76	2.30	44.20	0.80
Por consumo de alimentos suplementarios	63.61	62.89	36.06	55.56	50.10	45.23	97.60	50.60	8.60
Por el N fijado simbióticamente	0	14.93	15.14	0	0	0	0	5.00	0
Por fertilización	0	0	0	0	0	0	0	0	85.10
\% que representaron las diferentes vías de salida									
Por las excreciones fuera del sistema	48.24	82.06	85.16	76.33	79.90	76.11	54.80	74.90	86.20
Por volatilizado NH_{3}	12.51	3.59	3.70	3.33	1.60	3.18	2.39	3.30	3.80
Por la venta de animales	13.59	1.28	16.18	16.18	0	3.82	13.40	1.90	0.70
Por la leche producida	23.54	11.06	5.39	2.43	7.30	10.82	24.40	15.30	8.90
Por la muerte de animales	2.70	1.99	16.94	1.96	1.20	6.05	4.90	1.90	0.20

La aplicación y validación del software, en diferentes fincas lecheras de la región occidental del país, demostró su aplicabilidad para obtener los resultados que reflejan el
estado del balance de los nutrientes, tanto a nivel de finca como en el suelo de las mismas. Una de sus ventajas es que permite al productor, a partir de la información inicial obtenida, simular diferentes alternativas para mejorar el balance de los nutrientes, según sus posibilidades de recursos.

Principales resultados

1. El Modelo "RECICLAJE" desarrollado permite estimar el balance de los nutrientes en los ecosistemas ganaderos.
2. La aplicación y validación del software, en diferentes fincas lecheras de la región occidental del país, demostró su aplicabilidad para obtener los resultados que reflejan el estado del balance de los nutrientes, tanto a nivel de finca como en el suelo de las mismas.
3. El software permite también simular, bajo diferentes circunstancias, nuevas vías para mejorar el reciclaje de los nutrientes, según las propuestas posibles del productor.

CAPÍTULO VII

METODOLOGÍA PARA LA EVALUACIÓN INTEGRAL DEL ESTADO DE FERTILIDAD DEL SUELO EN UNA REGIÓN GANADERA

Introducción

Se conocen numerosos indicadores que permiten interpretar el grado de fertilidad del suelo. No obstante, en los pastizales los mismos muestran amplias variaciones espaciales y temporales atribuibles, fundamentalmente, a la ineficiente distribución de las excreciones de los animales, las disímiles condiciones de suelo y la composición botánica (Mader y col. 2002). Por tales razones, la interpretación del grado de fertilidad del suelo en un pastizal no es una tarea fácil y, por ello, es necesario conocer el valor de los indicadores de la composición química, las propiedades físicas y la actividad biológica, como entes integradores del concepto de fertilidad general (Schipper y Sparling 2000)
El objetivo del presente Capítulo fue identificar el estado general de fertilidad del suelo (física, química y biológica) de seis unidades lecheras de una región ganadera de la provincia de La Habana y proponer una metodología para su evaluación.

Materiales y Métodos

Se utilizaron los valores de los indicadores materia orgánica, nitrógeno total, fósforo asimilable, calcio, pH , resistencia a la penetración, hojarasca, infiltración del agua y actividad biológica, previamente seleccionados por ser los que más contribuyeron a explicar la variabilidad en la fertilidad de los suelos de 6 fincas lecheras de la provincia La Habana (Rodríguez, 2004).
Ubicación y características generales de la región ganadera
En la tabla 41 se muestran algunas de las principales características de las unidades seleccionadas. Todas ellas están ubicadas en el municipio San José de las Lajas y cuentan con áreas entre 42 y 83 ha; las vaquerías 1,3 y 4 se encuentran ubicadas en regiones con pendiente entre 5 y 15%.

Tabla 41. Unidades seleccionadas para el estudio.

Unidad	Características
1	Posee 80 ha en terrenos con pendientes entre 10 y 15% Está dividida en 40 cuartones de aproximadamente 1 ó 2 ha.
2	Posee 60 ha y se encuentra dividida en 100 cuartones de 0.65 ha. Terrenos llanos
3	Posee 62 ha y se encuentra dividida en 78 cuartones de 0.38 ha. Los terrenos tienen pendientes entre 5 y 10 \%.
4	Posee 83 ha dividida en aproximadamente 30 cuartones de 0.80 ha. Terrenos con pendiente entre 5 y 10\%
5	Posee 49 ha dividida en 76 cuartones. Terrenos llanos
6	Posee 42 ha dividida en 54 cuartones. Terrenos llanos

Por su parte, en tabla 42 se muestran los tipos de suelos presentes en cada una de las unidades según la nueva versión de clasificación de Hernández y col. (2005). Los tipos identificados están ampliamente representados en las áreas ganaderas del país.

Tabla 42. Tipos de suelos en cada una de las unidades

Unidad	Tipo de Suelo
1	Pardo cálcico medianamente lavado
2	Gley vértico típico carbonatado y Ferralítico Rojo lixiviado éutrico
3	Pardo cálcico medianamente lavado
4	Pardo cálcico medianamente lavado
5	Ferralítico amarillento lixiviado éutrico.
6	Ferralítico Rojo lixiviado eútrico

Las características generales del pastizal en cada unidad se indican en la tabla 43.

Tabla 43. Características generales del pastizal en las unidades lecheras:

Unidad	Especies presentes	\% de área que ocupan	Biomasa consumible t/ha/año MS
1	Pastos naturales (26 ha) (P. notatum, , D. anulatum)	54.0	158.6
	C. nlenfuensis (26.8 ha)	35.7	254.6
	S. officinarum (2.6 ha)	3.5	58.5
	P. purpureum c.v King grass, de corte (3.9 ha)	5.3	78.0
2	Pastos naturales (2.6 ha) (P. notatum, D. anulatum)	44.0	130
	C. nlemfuensis (2 ha)	3.4	18.0
	P. purpureum cv.CT-115 (25 ha)	42.3	600.0
	L. leucocephala/ C. nlemfuensis (6 ha)	10.1	95.4
3	S. officinarum (6.7 ha)	11.6	151.0
	P. purpureum cv.King grass de corte (2.6 ha)	3.4	55.1
	L. leucocephala/ Pastos naturales (48.3 ha)	83.7	183.5
4	Pastos naturales (75.65 ha) (S. indicus, P.virgatum)	90.9	302.6
	S. officinarum (4.55 ha)	5.4	31.5
	C. nlemfuensis (3.6 ha)	3.6	100.1
5	Pedestales ${ }^{\text {(a) }}$ (1 ha)	2.0	2
	L. leucocephala/ Pastos naturales (1.5 ha)	3.1	3.1
	S. officinarum (2.4 ha)	4.9	4.9
	P. purpureum cv.CT-115 (8 ha)	16.3	168.0
	C. nlemfuensis (9 ha)	18.3	103.5
	Pastos naturales (27.1 ha)	55.3	121.5
6	Pastos naturales (6.2 ha) (S. indicus, P. notatum)	16.3	25.4
	C. nlemfuensis (25 ha)	65.7	280.0
	P. purpureum cv.King grass de corte (1.5 ha)	3.8	27
	P.purpureum cv.CT-115 (5.3 ha)	13.9	127.2

(a) Franjas de asociaciones múltiples de leguminosas (N. wightii, M. athropurpureum, S. gracilis, P. phaseoloides) separadas 3 m por franjas de gramíneas perennes.

Procedimiento

Primeramente se efectuó la revisión bibliográfica acerca de la interpretación que diversos autores hacen de los indicadores de la fertilidad del suelo en los pastizales permanentes. El rango de valores y la interpretación como desfavorable, poco favorable y favorable fueron sugeridos por los autores de los diferentes métodos analíticos. Así, se tomaron en cuenta las valoraciones de Walkley y Black, citado por Paneque (2005) para el indicador contenido de materia orgánica; AOAC (1995) para el nitrógeno total; Oniani (1964) para el fósforo asimilable; Domínguez (1997) para el calcio; Finke y col. (1999) para la infiltración; Isemeyer (1952) para la respiración basal; Alonso (2004) para la acumulación de hojarasca y Calero y col. (2001) para la actividad biológica (tabla 44)..

Como criterio de evaluación de la fertilidad general de los suelos se confeccionaron figuras radiales (Socorro 2002), en las cuales a cada indicador se le asignó una puntuación que varió de 1 a 10 puntos, en la medida que el indicador fue más favorable (puntuación 1 = desfavorable, 5 = medianamente favorable y 10 = favorable) (ver la tabla que sigue).

La puntuación total del grado de fertilidad de cada suelo se obtuvo mediante la suma de los puntos calculados para cada uno de los indicadores, según la fórmula:
GFS $=$ 年untos de los indicadores / Pp . 100
Donde: GFS = grado de fertilidad del suelo
Σ =suma de los puntos obtenidos por los indicadores
$\mathrm{Pp}=$ Puntuación potencial (90 en el presente caso, pues se presentaron 9 indicadores de fertilidad, a cada uno de los cuales se le asignó una puntuación máxima de 10 puntos)

Tabla 44. Puntuación asignada a cada indicador de la fertilidad del suelo

Indicador	Valor en el suelo	Interpretación	Puntuación asignada
Materia orgánica, \%	<2.0	Desfavorable	1
	3.5	Medianamente favorable	5
	>5.0	Favorable	10
Nitrógeno total,\%	<0.10	Desfavorable	1
	0.17	Medianamente favorable	5
	>0.25	Favorable	10
Fósforo asimilable, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{mg} / 100 \mathrm{~g}$	< 2.5	Desfavorable	1
	3.5	Medianamente favorable	5
	>5.0	Favorable	10
Calcio, cmol/kg	< 35	Desfavorable	1
	70	Medianamente favorable	5
	>100	Favorable	10
$\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O}\right)$	3.5-4.5	Desfavorable	1
	4.6-5.5	Medianamente favorable	5
	5.5-6.5	Favorable	10
Resistencia a la penetración, $\mathrm{kg} / \mathrm{cm}^{2}$	>11	Desfavorable	1
	8	Medianamente favorable	5

	<4	Favorable	10
Hojarasca, $\mathrm{g} / \mathrm{m}^{2} / \mathrm{mes}$ (en el período lluvioso)	<25	Desfavorable	1
	50	Medianamente favorable	5
	>75	Favorable	10
Infiltración, mm/h	<10	Desfavorable	1
	30	Medianamente favorable	5
	>60	Favorable	10
Actividad biológica (respiración basal), mg CO 2 g suelo $\quad 2$	<0.5	Desfavorable	1
	1.0	Medianamente favorable	5
	>1.5	Favorable	10

Resultados y discusión
El gráfico 12 muestra el comportamiento de los indicadores en cada una de las fincas. Nótese que en el suelo de todas las unidades (excepto en la 6) la hojarasca que se acumuló mostró valores desfavorables, con menos de $25 \mathrm{~g} \mathrm{MS} / \mathrm{m}^{2}$ medida en la estación lluviosa. Esto podría influir de forma marcada en la fertilidad del suelo a largo plazo, pues será limitado el ciclo biogeoquímico de los nutrientes por esta vía, que es además responsable del mantenimiento de adecuados valores de este indicador en el suelo (Feige y col. 1995).
El mayor valor de hojarasca encontrada en la vaquería 6 puede atribuirse a que en esta unidad el área de pasto predominante fue Cynodon nlemfuensis, que representó más del 65% del pastizal. Según Crespo y Pérez (2000) este pasto se destacó entre las gramíneas (después de Brachiaria decumbens) por producir mayor cantidad de hojarasca, principalmente cuando se practica el manejo rotacional adecuado (Crespo 2005), como ocurrió en esta unidad.

La infiltración mostró valores desfavorables, con solo $10 \mathrm{~mm} / \mathrm{h}$, en las vaquerías 3,4 y 5, lo cual señala la posibilidad de encharcamiento de agua en el suelo de los pastizales
de estas unidades durante los períodos de intensa actividad de lluvias favorecido por el pisoteo animal (Amézquita, 2004). En estos pastizales predominaron los pastos nativos y algunas áreas de L. leucocephala con vegetación herbácea de pastos naturales de pobre cobertura, aunque también los tipos de suelos predominantes, como los Pardos cálcicos y los Ferralíticos amarillentos, que se caracterizan por pobre drenaje (Anon, 1984), pudieron contribuir a la baja infiltración.

Por su parte, la presencia de suelos Ferralíticos Rojos en casi el 90 \% del área de pastizales en las unidades 2 y 6, pudiera explicar los valores favorables de infiltración, mientras que en la vaquería 1 esto pudo deberse a la presencia de adecuada cobertura de pastos artificiales y naturales, junto con el relieve ligeramente ondulado del terreno.
En términos generales, la baja acumulación de hojarasca y la deficiente infiltración fueron los indicadores menos favorables en la fertilidad de los suelos estudiados. Sin embargo, la resistencia a la penetración, como índice que expresa el grado de compactación, no mostró valores desfavorables en la mayoría de ellas, a pesar del pastoreo ininterrumpido de esos pastizales durante muchos años. Se sabe que la propiedad de los pastos perennes, de cubrir totalmente el suelo durante todo el tiempo, permite disminuir el efecto del pisoteo animal en la compactación (Broersma y col. 2004). Por eso, es difícil explicar el alto valor de resistencia a la penetración en la vaquería 5 , a no ser que el 20% del área que está destinada al corte de forraje haya influido en este comportamiento.

Unidad 1

Resistencia a la penetración

Unidad 3

Unidad 5

Unidad 4

Unidad 2

Unidad 6

Gráfico12. Figuras radiales que muestran el valor de la puntuación de cada indicador en las diferentes vaquerías

La actividad biológica mostró alto valor (más de 10 mg de $\mathrm{CO}_{2} / \mathrm{g}$ de suelo). En esta unidad más del 90 \% del área estuvo ocupada por pastos naturales, lo que indica que por mucho tiempo el suelo no fue perturbado, lo cual, unido al denso desarrollo radicular que alcanza un pastizal natural en los primeros 15 cm (Crespo y Lazo 2001) parece haber favorecido la actividad microbiana. Es probable que si especies mejoradas hubieran permanecido en el pastizal durante similar tiempo, los valores de actividad biológica fueran aun mayores.
Los indicadores MO y N mostraron poca variación entre los pastizales estudiados y los valores se encontraron ubicados en la categoría de contenido favorable. Sólo en las unidades 3 y 5 , que estuvieron ocupados por un sistema silvopastoril de Leucaena en el primer caso y alto porcentaje de área de corte de forraje en el segundo caso, la MO presentó valores no favorables. El sistema silvopastoril se había manejado con los animales inadecuadamente, de modo que el follaje de la leucaena no era accesible a los animales por la altura que alcanzaron, lo que además proyectó un nivel de sombra tal que afectaron la composición botánica y la productividad del estrato herbáceo de pastizal. Por su parte, el corte ininterrumpido de forraje en la unidad 5, no facilitó la acumulación de hojarasca y, por lo tanto, no favoreció el aumento del contenido de materia orgánica

Tomando en consideración las figuras del gráfico 21 y los valores para cada indicador señaladas en Materiales y métodos, se procedió al cálculo de la puntuación total de la fertilidad del suelo en cada unidad ganadera (tabla 45).

Tabla 45. Puntuación calculada de la fertilidad del suelo en las unidades estudiadas.

Indicadores	Unidad 1	Unidad 2	Unidad 3	Unidad 4	Unidad 5	Unidad 6
Nitrógeno	10	10	10	9	9	10
Fósforo	10	6	5	10	10	10
Calcio	8	6	7	6	1	1
pH	6	10	10	5	10	10
MO	10	10	7	10	6	9
Hojarasca	1	1	1	1	1	10
Infiltración	10	10	2	1	1	7
Resistencia a la penetración	8	10	10	10	1	10
Respiración basal	6	2	8	10	5	2
Total	69	65	60	62	44	64
Puntuación potencial	90	90	90	90	90	90
\% del potencial	75	72	66	69	49	75

La interpretación de los valores de la fertilidad del suelo que aparecen en la tabla se corresponden bien con las figuras radiales mostradas en el gráfico 12, donde se nota que en las unidades de menor puntuación los valores de la mayoría de los indicadores se presentan distantes del perímetro de sus respectivas figuras. De acuerdo con esta metodología, el grado de fertilidad del suelo se interpreta como:

Unidad1=Unidad6>Unidad2>Unidad 4>Unidad3 >Unidad5
Esta propuesta de puntuación de los diferentes indicadores puede ser de utilidad para monitorear sistemáticamente el comportamiento que presentan los mismos en diferentes sistemas de producción animal en pastoreo. El objetivo será lograr acercar

Ios indicadores al valor 10, de modo que su lejanía por debajo de dicho valor será una alerta para adoptar medidas agrotécnicas y de manejo sostenible que los mejoren.
Esta metodología la utiliza con buenos resultados (Rodríguez et al. 2008) para interpretar el estado integral de la fertilidad del suelo en una finca con sistema silvopastoril en la provincia de La Habana.
Se propone aplicar la presente metodología como herramienta de trabajo para interpretar, de forma integral, el grado de fertilidad del suelo en unidades de la ganadería y seleccionar técnicas sostenibles para mejorar los indicadores menos favorables. Se recomienda la ampliación de la validación de esta metodología a mayor número de explotaciones ganaderas.

En el Anexo 2 de esta Tesis se muestra la Metodología para la interpretación del estado de fertilidad del suelo en las fincas ganaderas.

Principales resultados

1. La metodología propuesta para interpretar el estado integral de la fertilidad del suelo, demuestra ser una herramienta valiosa para los productores, pues les permitiría identificar los indicadores menos favorables y seleccionar entonces técnicas sostenibles para su mejoramiento.

CONSIDERACIONES FINALES

Los resultados demostraron que a pesar de que los vacunos devuelven al ecosistema de pastizal, mediante las bostas y las micciones, prácticamente más del 80% del N, P y K contenido en los alimentos que ellos consumen, tales excreciones se depositan en áreas pequeñas y dispersas, donde ellas localizan altas concentraciones de dichos elementos, de modo que el reciclaje de los nutrientes por esta vía se produce de una forma ineficiente.

Se pudo comprobar que en una rotación del ganado, aún con una carga instantánea elevada (300 UGM/ha), las bostas cubrieron solamente el 1.55% del área del cuartón, lo que pudiera estimarse en alrededor de 12.4\% anual en 8 rotaciones.

No obstante, el área real de influencia de las excreciones (bostas y orina) sobre el pastizal resulta mayor que el valor anteriormente indicado, pues aunque en muchas ocasiones el ganado orina al mismo tiempo que defeca, en otras ocasiones solo orinan, de modo que la suma total del área efectivamente beneficiada podría estimarse en alrededor del 30\% anual.

Lo anterior puede suceder cuando, como en nuestro caso, la carga animal instantánea fue elevada y los animales pastorearon durante 16 horas diarias en cada rotación. No obstante, si tenemos en cuenta los resultados que obtuvo Rodríguez (2001), que indicaron que en similar sistema de producción, las vacas depositan alrededor del 48\% de las excreciones en las áreas fuera del pastizal (naves de sombra, sala de ordeño y calles entre cuartones), entonces podemos estimar que con 24 horas de pastoreo el área de suelo que pueden cubrir las excreciones en el pastizal podría aproximarse al 60\% anual. Esto último haría mucho más eficiente el reciclaje de los nutrientes por esta esta vía, que es la de mayor cuantía en el ecosistema de pastizal.

No obstante lo anterior, pudimos comprobar que la bosta no siempre produce un efecto favorable en el crecimiento y el rendimiento del pasto, sino que esto resulta solo evidente en la estación lluviosa, con mayor intensidad en los 4 primeros meses de dicha estación, cuando las temperaturas y las lluvias presentan los mayores valores, mientras
que en los meses de la estación seca, las bostas tendieron a encostrarse y no produjeron efecto alguno en el pasto.

Sin embargo, las micciones (orina) siempre ejercieron un efecto marcado en el pasto durante prácticamente todo el año, con mayor intensidad en los meses más cálidos y húmedos de la estación lluviosa del año.

Un resultado interesante fue la determinación de las pérdidas de N -amoniacal que experimentaron las bostas y las micciones del ganado en el campo, las cuales representaron valores de volatilización de 2.5-4.1 \% en las bostas y de $1.8-1.9 \%$ en las micciones con respecto al contenido de N total en dichas excreciones, lo cual hay que considerar también como salidas de N en estos ecosistemas.

Habrá que prestar más atención al efecto que ejerce la orina en el marcado incremento de K en el pasto, lo cual se produce porque los vacunos devuelven casi todo el K a través de las micciones, cuya concentración puede llegar a ser de $800 \mathrm{mgN} / 100 \mathrm{ml}$. Esto podría ocasionar trastornos a la salud de los animales debido a la posible incidencia de hipomagnesemia en los mismos producto del desbalance K/Ca+Mg en el pasto.

Por otra parte, debido a que la orina solo contiene trazas de P , habrá que preocuparse por el bajo tenor de este elemento en el pasto que crece sobre las manchas de las micciones en el pastizal.

Lo indicado anteriormente podría tener una connotación negativa en los sistemas muy intensivos de producción animal, donde la alta intensidad de bosteo y micciones sobre el pastizal, aunque incrementa la poducción de los pastos, pudiera causar graves desbalances de nutrientes en ellos.

Aunque en menor cuantía que las excreciones, la hojarasca de los pastizales constituye una vía más estable y eficiente en el reciclaje de los nutrientes y en la protección del suelo en estos ecosistemas. Por lo general, la hojarasca que producen las plantas que componen un pastizal cubre toda la superficie del suelo, de modo que el reciclaje de los
nutrientes por esta vía se produce en toda el área, lo cual vimos que no se logra con las excreciones.

Dos hechos muy importantes quedaron comprobados con esta vía de reciclaje: a) la mayor capacidad de producción de hojarasca, con una velocidad de descomposición más rápida en el campo por parte de las especies leguminosas, en comparación con las gramíneas y 2) la mayor capacidad de producción de hojarasca, con mayor reciclaje de N, P y K en los pastizales que presentan mayor diversidad de plantas (arbóreas, arbustivas, estrato herbáceo, etc.), propia de los sistemas silvopastoriles.

En el estudio de caso con ganado de carne (ver experimento 9) quedó demostrado que en el pastoreo con gramíneas nativas y leucaena en el 100\% del área, el balance de N en el suelo y en el sistema general resultó positivo. Esto lo atribuimos, en gran medida, al aporte de N por la hojarasca y a la fijación biológica de N por esta leguminosa arbustiva, lo cual resultó favorable cuando ella representó el 30% de la disponibilidad de materia seca de dicho pastizal. Esto pudo comprobarse también en las diversas fincas lecheras en que se aplicó el programa del software RECICLAJE.

Otra vía nada despreciable de reciclaje de nutrientes en el pastizal la constituye, además, la biomasa radicular de las plantas. En efecto, se comprobó que las raíces de los pastos estudiados producen una biomasa fresca al aire de alrededor de $1 \mathrm{t} / \mathrm{ha}$ las cuales, si consideramos que el 50% de ella rejuvenece cada año (Hernández y col. 1998) entonces se estima que puede ocurrir un aporte de $19-23 \mathrm{Kg} \mathrm{N}, 3-6 \mathrm{Kg} \mathrm{P}$ y 1.3 - 2.2 Kg K / ha.

Lo anterior se produce en los primeros 15 cm superiores del suelo, lo que significa que, a partir de la descomposición de las raíces que mueren, los nutrientes quedan fácilmente disponibles para los pastos. Sería de mucho interés investigar cómo se comportaría esta vía de reciclaje en los pastizales más diversificados, con presencia de gramíneas, leguminosas rastreras, arbustivas y de diversos árboles.

De forma similar a como ocurre con la hojarasca, esta vía de reciclaje resulta más uniforme que la que ocurre con las excreciones animales y contribuyen, al mismo tiempo, a la conservación del suelo y su fertilidad.

Nuestros resultados permitieron conocer, además, que el agua de las lluvias representa también una vía nada despreciable de entrada de N en el ecosistema de pastizal, pudiéndose estimar con facilidad su cuantía, si conocemos que cada mm de lluvia aporta $0.019 \mathrm{Kg} / \mathrm{ha}$ de N , el cual es rápidamente asimilado por las plantas.

En nuestras investigaciones partimos de la determinación de los valores de nutrientes que extraen del suelo los pastizales, los nutrientes que ingieren los animales por el pasto consumido, los que devuelven los vacunos al pastizal a través de sus deyecciones y lo que devuelve el mismo pastizal al suelo a través de la hojarasca y de las raíces que mueren. Otras entradas de nutrientes a la finca, como los alimentos complementarios que comen los animales, la fijación biológica de N que aportan las leguminosas y el N que entra a través del agua de lluvia, fueron también tenidas en cuenta.

Por su parte, entre las salidas de nutrientes se contemplaron la volatilización de N amoniacal de las excreciones, la muerte y la venta de animales, la ganancia de peso corporal de los mismos, la producción de leche y los nacimientos.

Por lo tanto, sería de mucho interés conducir investigaciones futuras relacionadas con el comportamiento del reciclaje interno de los nutrientes en el componente suelo en los ecosistemas de pastizales, lo cual no pudimos abarcar en nuestras investigaciones.

Debido a que, en general, nuestros estudios se condujeron en fincas con terrenos de relieve llano, las pérdidas de suelo por arrastre de las lluvias y los nutrientes contenidos en él, no fueron tomadas en cuenta. No obstante, esto merece investigarse con mayor profundidad en terrenos con relieve ondulado, condición que presenta una elevada proporción de superficie de suelo dedicada a la ganadería en el país.

El software desarrollado y validado demostró ser una herramienta útil para que el productor interprete cómo se comporta el balance de los nutrientes en su finca a partir de los resultados obtenidos en su sistema de producción en el año precedente.

La bondad de fácil interacción del software con el usuario, le permite simular diversas alternativas de cambios en el manejo de su finca, de manera de lograr un balance positivo de los nutrientes en el sistema.

A la opción escogida en la simulación, será necesario realizar además una valoración económica ex antes, para lograr que los ajustes técnicos que necesita introducir el productor resulten también económicamente sostenibles.

Los resultados obtenidos en esta Tesis nos permiten afirmar que el mantenimiento sostenible de la fertilidad de los suelos que ocupa la ganadería pudiera ser lograda si:
> se mantienen pastizales con adecuada diversidad de plantas (propia de los sistemas silvopastoriles), donde las leguminosas herbáceas, arbustivas y arbóreas tengan buena representación.
> si se practica un manejo adecuado del pastizal, con una carga animal que permita no solo satisfacer las necesidad alimentaria de los animales sino que, al mismo tiempo, grantice una acumulación favorable de hojarasca y una actividad biológica alta en el suelo.
> si se emplean cargas instantáneas elevadas, que permitan una alta deposición de excreciones en cada área que se pastorea y si se devuelven al pastizal las excreciones que se depositan en las naves de sombra, en la sala de ordeño, en los pasillos entre los cuartones, etc.

De todos modos, la aplicacación del software RECICLAJE permitirá al productor conocer anualmente como se encuentra el estado del balance de los nutrientes en su finca y planificar así la estrategia futura a seguir para mantener su estabilidad. Esto se fortalecerá con el empleo de la metodología descrita para interpretar el estado actual de la fertilidad integral de sus suelos.

CONCLUSIONES GENERALES

La integración de los resultados obtenidos nos permite llegar a las siguientes conclusiones generales:

- Las bostas del ganado vacuno producen efectos favorables en el rendimiento y la composición química del pastizal y del suelo, con máxima intensidad en los meses de Junio, Julio, Agosto y Septiembre, pero con poco ó ningún efecto en los meses de la estación seca.
- Por su parte, el efecto de la orina en el rendimiento y la composición química del pastizal y del suelo se manifiesta durante todo el año, con mayor intensidad durante la estación lluviosa.
- Las bostas se descomponen totalmente a los 120-150 días en los meses de la estación lluviosa, en comparación con 180 a 210 días en la estación seca.
- Ambos tipos de excreciones experimentan pérdidas de N-NH3, cuyos valores se ajustan al Modelo Función de Gauss en el caso de las bostas y al Logarítmico en Función Cuadrática en el caso de la orina.
- Las especies de pastos difieren marcadamente en la tasa de acumulación de hojarasca, con mayores valores para las leguminosas.
- La descomposición de la hojarasca en el pastizal resulta más rápida en las leguminosas que en las gramíneas, lo cual tiene relación directa con su contenido de N .
- Con mayor diversidad de especies de plantas en el pastizal ocurre mayor producción de hojarasca y, con ello, mayor reciclaje de nutrientes en el ecosistema.
- Tanto la biomasa de raíces de los pastos como el agua de lluvias, aportan importantes cantidades de nutrientes, que deben ser consideradas entre las entradas al ecosistema.
- La aplicación y validación del software RECICLAJE, en diferentes fincas lecheras de la región occidental del país, demuestra su aplicabilidad en la producción.
- La metodología que se propone para interpretar el estado integral de la fertilidad del suelo, demuestra ser una herramienta valiosa para los productores, que les permite identificar los indicadores menos favorables y seleccionar así las técnicas más adecuadas para su mejoramiento.

RECOMENDACIONES

1. Tener alta diversidad de plantas (especies gramíneas, leguminosas, plantas arbustivas y arbóreas), elevada carga animal instantánea, adecuado número de cuartones y devolver periódicamente, al área de pastizal, las excreciones que depositan los animales en los locales de descanso y de ordeño, para hacer más eficiente la capacidad de reciclaje de los nutrientes en el ecosistema de pastizal.
2. Ampliar la aplicación del software RECICLAJE aquí desarrollado en cualquier escala de producción animal con vacunos.
3. Aplicar en la producción la Metodología propuesta para la interpretación del estado integral de la fertilidad del suelo en las fincas ganaderas.
4. Realizar futuras investigaciones para estudiar el reciclaje interno de los nutrientes en el componente suelo en los ecosistemas de pastizales.
5. Incluir los resultados de la presente Tesis en la enseñanza universitaria y de post-grado.

Aportes científicos

1. La obtención de los Modelos de volatilización del N amoniacal en ambos tipos de excreciones, que permitieron conocer, bajo nuestras condiciones, como ocurre la dinámica de desaparición de este elemento en el ecosistema de pastizal.
2. El conocimiento de la magnitud de la producción y la descomposición de la hojarasca de un grupo importante de gramíneas y leguminosas extendidas en la producción ganadera de nuestro país y su importancia en el retorno de los nutrientes.
3. La utilización de un novedoso enfoque de sistema para el estudiar el reciclaje de los nutrientes, que contempló este conocimiento en la íntima interrelación suelo-pastizalanimal, que son los tres componentes básicos del sistema ganadero.
4. La propuesta de una metodología para evaluar, de forma integral, el estado de fertilidad de los suelos en la finca ganadera.

NOVEDAD CIENTÍFICA DE LA TESIS

La novedad científica de la Tesis queda identificada por el desarrollo de una secuencia experimental que identifica y cuantifica las principales vías de entrada y salida de los nutrientes (con énfasis el N, P y K) en el ecosistema de pastizal de fincas ganaderas, principalmente en explotaciones lecheras, como son el comportamiento de las excretas y la orina de los animales y su efecto en el rendimiento y la calidad de los pastos, su efecto en la composición química del suelo, la volatilización del N en forma amoniacal de estas excreciones, la capacidad de producción de hojarasca de las especies de pastos de amplia difusión en la ganadería cubana (gramíneas, leguminosas y arbustivas) y sus tasas de descomposición y liberación de nutrientes, la mayor capacidad de reciclaje de los nutrientes en los pastizales más diversificados y la magnitud de los aportes de nutrientes por la biomasa radicular de los pastos y por el agua de lluvias. Amplía la magnitud de la novedad la creación de un Modelo de simulación, cuyas bases de datos contienen la información básica obtenida en las investigaciones anteriores y la obtención de un Software de carácter interactivo, para su aplicación en la producción, la investigación y la docencia postgraduada. La validación y aplicación de este software en un número grande de vaquerías de la producción y las recomendaciones generadas por el mismo, consolidan el valor de las investigaciones conducidas para la práctica social. Otro valor añadido a la novedad científica lo constituye la Metodología propuesta y validada en otro número importante de vaquerías en el occidente de Cuba relacionada con la interpretación del estado integral de fertilidad de los suelos de las fincas lecheras. Constancia de la valoración anterior lo constituyen los numerosos avales nacionales e internacionales recibidos, las publicaciones del autor relacionados con el tema, la obtención de Premios Nacionales de la ACC, del MINAGRI y del CITMA, así como los premios recibidos en eventos científicos nacionales y extranjeros, cuya constancia la ofrecemos al final de este documento.

REFERENCIAS

Aarons, S. R. O Connor, C. R., Hall, M y Gourley, C. J. P. 2001. Contribution of dairy cow manure to soil fertility and nutrients redistribution in pastures. XIX Int. Grassld. Congr., Brasil. P. 41.

Alonso, J.2004. Factores que intervienen en la producción de biomasa de un sistema silvopastoril Leucaena (Leucaena leucocephala vc Perú) y guinea (Panicum maximun vc likoni). Tesis Dr. Sc., Instituto de Ciencia Animal, La Habana, Cuba.
Amaral, A. 1972. En: Técnicas analíticas para evaluar macronutruientes en cenizas de caña de azúcar. Laboratorio de nutrición de la caña. Escuela de Química. Universidad de La Habana
Amézquita, E. 2004. La fertilidad física del suelo. Conferencia. XVI Congreso Latinoamericano y XII Congreso Colombiano de la Ciencia del Suelo. CDrom, Colombia. Anon, 1984. Metodología para la Cartografía a escala detallada de los Suelos de Cuba. Instituto de Suelos, MINAGRI, La Habana, Cuba. 62 pp
AOAC. 1995. Official methods of analysis. 15 ed. Washington: Association of Official Agricultural Chemists. 1298 p
Arteaga, O., Chongo, R., Fernández, J.M y Guerra, G. 1988. Aportes de la excreta en el reciclaje de nutrimentos en pasturas bajo pastoreo nocturno. En: Asociación Latinoamericana de Producción Animal (ACPA) (ED). XI Reunión. La Habana. Cuba. P. 88.

Arteaga, O., Chongo, R., Fernández, J.M. y Guerra, G. 1991. Reciclaje de nutrimentos en pastoreo nocturno. Efecto sobre el pastizal y la fertilidad del suelo. Resultado para la investigación cod, 18ID 150. Ciencia y Técnica. Habana.
Assis, A. G y France. J. 1983. Modelling dairy cattle feeding in the south east region of Brazil. Agricultural Systems. 12:29.

Ayarza, M.A. 1988. Potassium dynamics in a humid tropical pasture in the Peruvian Amazon. Ph D. Thesis North Carolina State University. Raleigh, NC, USA. 161 p.
Ball, P.R., Keeney, D.R., Theobald, P.W. y Nes, P. 1979. Nitrogen balance in urine affected areas of a New Zealand pasture. Agron. J. 71:309.

Ball, P.R. y Keeney, D.R. 1981. Nitrogen losses from urine affected pastures of a New Zealand pasture under contrasting seasonal conditions. In: Smith, J.A. (Ed.). XIV International Grassland Congress. Summary of papers. June 14-24. Lexinton, K.Y University of Kentucky, College of Agriculture, RY, USA, p. 152.
Ball, P.R., y Ryden, J.C.1984. Nitrogen relationships intensively managed temperate grasslands. Plant \& Soil. 80:32.

Bartolanffy, L. von.1957. Quantitative losses in metabolism and growth. Quart. Rev. Biol. 32:228.

Benedict, H.M. 1981. The growth and carbohydrates responses of Agropyron smithii and Bouteloa gracilis to changes in nitrogen supply. Plant physiology, 56:481.

Bolan, N.S., Saggar, S., Luo, J.,_ Bhandral_, Ry Singh_J. 2004_ Gaseous Emissions of Nitrogen from Grazed Pastures: Processes, Measurements and Modelling, Environmental Implications, and Mitigation. Advances in Agronomy, 84:37.

Bolan, R., Amelung, W.G. y Friedrich, C. 2004. Role of aggregates surface and core fraction in the sequestration of carbon from dung in a temperate grassland soil. European J. Soil Sci. 55:71.
Broersma, K., Krzic, M., Merman, R. \& Bomke, A. 2004. Effects of grazing on soil compaction and water infiltration in forest plantations en the interior of British Columbia. Show Letter?. Number 110.

Bruce, R.C y Ebershon, J.P.1982. Litter measurements in two grazed pastures in south east Queensland. Tropical Grasslands. 16:180.

Cabrera, G. 2003. Caracterización de la macrofauna del suelo en áreas con manejo agroecológico en Cangrejeras, La Habana, Cuba. En Tesis de Maestría en Ecología y Sistemática Aplicada. La Habana. p. 49.

Cadish, G ; Schunke, R. M. \& Giller, K. E.1994. Nitrogen cycling in a pure grass pasture and a grass-legume mixture on a red latosol in Brasil. Tropical Grasslands. 28: 43-52.

Calero, B. J., Morales, A., Font, L. \& Alfonso. C. A. 2001. Estado microbiológico de un ferralsol sometido a diferentes sistemas de manejo agrícola. Boletín No. 4 SCCS. ISSN 1609-1876. Publicación electrónica.
Carran, R.A., Ball, P.R., Theobald, P.W. y Collina, M.E.G. 1982. Soil nitrogen balance in urine affected areas under two moistyre regimes in Southland. N.Z.S. Exp. Agric. 10:371 Castillo, E., Ruiz, T.E., Crespo, G, y Rodríguez, I. 1988. Efecto del intercalamiento de L. Leucocephala en pastizal natural en la ceba de machos de la raza Cebú. Mem. III Taller Internacional Silvopastoril. Matanzas, Cuba, p. 242.
Catchpoole, D.W., Blair, C. y Graeme, J. 1992. Forage tree legumes. III. Release of nitrogen from leaf, faeces and urine derived from leucaena and gliricidia. Aust. J. Agric. Res. 41:539.

Chadwick, D., Sommer, S., Thorman, R., Fangueiro_ D.,Cardenas, L.,_Amon,_B_y Misselbrook, T. 2011. Manure management: Implications for greenhouse gas emissions. Animal Feed Sci. and Technology, 166:514.

CIAT. 1990. Informe Anual 1989. Pastos tropicales. Documento de Trabajo 69, CIAT, Cali, Colombia.

Chung, S. y Lotero, C.J. 1987. Efecto de la orina depositada por los animales en pastoreo sobre la fertilidad del suelo. Rev. ICA (Colombia). 12: 107
Clark ${ }_{2}$ C.E.F., McLeod, K.L.M. _Glassey_ C.B., Gregorini ${ }_{2}$ P., Costall, D.A., Betteridge ${ }_{2}$ K y J.G. Jago, J.G. 2010. Capturing urine while maintaining pasture intake, milk production, and animal welfare of dairy cows in early and late lactation. J. Dairy Sci. 93:2280.

Crespo, G y González, A. 1983. Cantidad y distribución de las excretas en el pastizal y su influencia en la fertilidad del suelo. Rev. Cubana Cienc. Agric. 17:1
Crespo, G, y Arteaga, O. 1986. Utilización del estiércol vacuno en la producción de forrajes. Ed. Del Instituto de Ciencia Animal (EDICA), La Habana, Cuba. 31 p.
Cuesta, A. y Crespo, G. 1990. Nota técnica sobre el contenido de N en las lluvias de la región del Instituto de Ciencia Animal. Boletín Técnico N: 5. Serie Pastos. EDICA, La Habana. Cuba p.113-117

Crespo, G., Torres, V. y Rodríguez, I. 1995. Una nota acerca de la tasa de descomposición de las bostas durante la estación seca. Rev. Cubana Cienc. Agric. 29:251.

Crespo, G., Cuesta, A. y Torres, V. 1997. Estudio de la volatilización de $\mathrm{N}-\mathrm{NH}_{3}$ en bostas de vacas en diferentes meses del año. Nota técnica. Rev. Cubana Cienc. Agric. 31:149.

Crespo, G., Flores, A., Febles, G. y Díaz, H. 1998. Influencia de la distribución de las bostas de vacas lecheras en un pastizal de Cynodon nlemfuensis en la estación seca. Rev. Cubana Cienc. Agric. 32:83
Crespo, G. y Pérez, A.A. 2000. Significado de la hojarasca en el reciclaje de los nutrientes en los pastizales permanentes. Rev. Cubana Cienc. Agríc. 33:349
Crespo G. y J. Lazo 2001. Estudio de la biomasa de raíces de C. nlemfuensis cv panameño, P. maximum cv likoni D. annulatum sp. y su aporte de nutrientes. Rev. Cubana Cienc. Agric. 35:277.
Crespo, G y Fraga, S. 2002. Nota técnica acerca del aporte de hojarasca y nutrientes al suelo por las especies Cajanus cajan (L.) Millps y Albizia lebbeck (L.) Benth en sistemas silvopastoriles. Rev. Cubana Ciencia agrícola 36:397.

Crespo, G. 2005. Efecto de la intensidad de bosteo de vacas lecheras en el pastizal. En Evaluación y rescate de la fertilidad de los suelos y la producción de pastos y forrajes en una granja ganadera de La Habana. Informe Final de Proyecto. Programa Ramal de Recursos Naturales, MINAGRI, La Habana.

Crespo Flores, G., González, P.J., Arzola, J. y Morgan, O. 2010. Efecto de la inoculación de hongos micorrizicos arbusculares nativos y una especie seleccionada en los pastos Brachiaria decumbens vc. Basilisk y Panicum maximum vc. Mombaza. Rev. Cubana Cienc. Agríc. 44:307.
Curry, J.P. 1987. The invertebrate fauna of grassland and its influence on productivity. II. Factors affecting the abundance and composition of the fauna (Review Paper). Grass Forr. Sci. 42:197.

Dämmgen, U. y Hutchings, N.J. 2006. Emissions of gaseous nitrogen species from manure management: A new approach. Enviromental Pollution,154:488.

Dominguez, A.V. 1997. Los elementos nutritivos en el sistema suelo-planta. Fertilidad del suelo. En Tratado de Fertilización, 3ra edición, Ediciones Mundi Prensa. Madrid-Barcelona-España, 607 pp.
Doak, B.W.1982. Some chemical changes in the nitrogenous constituents of urine when vowed on pasture. J. Agric. Sci. 42:162.
Duncan, D.B.1955. Multiple range and multiple F tests. Biometrics. 11:1.
FAO, 1982. Bulletin. Organic Materials and Soil productivity.
Faasen, H.G. y van Dijk, H. 1987. Manure as a source of nitrogen and phosphorus in soils. In: Meer, H.G. v. d. (ed.). Animal manure on Grassland and Fodder Crops. Martinus NNijhoff Publishers, Dordrecht, Netherlands, p. 17-45.
Feige, B.J.; Melillo, J. Y.; \& Cerri, C.C. 1995. Changes in the origin \& quality of soil organic matter after pasture production in Rondonia (Brazil). Plant \& Soil. 175:21-29.

Febles G y Ruiz, T. 2001. Sistemas agroforestales pecuarios. En: Sistemas silvopastoriles, una opción sustentable. Mem. Del Curso Centro de Desarrollo Tecnológico, Tantakín. P. 8-18

Ferreira, E.C.P., Resende, L., Galindo, A., Resende, R., Tarré, R., Macedo, O.C., Oliveira, B.J., Alves, S., Urquiaga, T. y Boddey, R. 2000. Recuperacao do nitrogenio da urina bovina pela pastagem de Brachiaria humidicola (Rendle) Schweickt, cultivada no sul da Bahía. Trabajo presentado en la XVI Reunión Latinoamericana de Producción Animal (ALPA), Montevideo, Uruguay.
Finke,P., Hartwich,R.., Dudal,R., Ibañez,J., Jamagne,M., King,D, Montanarella, L \& Yassogloer,M. 1999. Una base de datos de suelos georeferenciada para Europa. Manual de Procedimientos. Versión 1.1 Ed. Comité Científico del Buro Europeo de suelos, Inglaterra, P 104-109.
Flores, G.A.1994. Significado de las excreciones del ganado en pastoreo en el sistema Suelo-Pasto-Animal. Material de Estudio. Universidad Rómulo Gallegos, República de Venezuela. 144 p.

Forbes, J.M. 1977. Models of the control of food intake and energy balance in ruminants. In Hungan Models: quantitative theory of feeding control. Ed. D.A, Booth. Academic Pres. London, p. 45

Freer, M., Davisdon, J L., Amstrong, J. S. y Donnely, J. 1970. Simmulation of summer grazing. Proc. XI Intern. Grassl. Congr. P. 32
Franco, A., Schuhmacher__M., Roca, E. y_ Domingo, J.L. 2006._Application of cattle manure as fertilizer in pastureland: Estimating the incremental risk due to metal accumulation employing a multicompartment model. International Enviroment, 32:724.
Fundora, O., Arzola, N. y Machado, D.1983. En Agroquímica. Editorial Pueblo y Educción. La Habana, Cuba.
Gómez, P.O., Carmona, D., Echeverría, H. y Rosso, O.R. 2003. Agricultura Orgánica y Medio Ambiente. En: Modelos Alternativos. Curso Internacional Ganadería, Desarrollo Sostenible y Medio Ambiente. Ed. Fernando Funes Monzote. La Habana, p. 63 - 75.

Granstedt, H. 2000. Increasing the efficiency of plant nutrient recycling within the agricultural system as a way of reducing the load to the environment - experience from Sweden and Finland. Agriculture, Ecosystem and Enviroment, 80:169.

Groot, J.C.J., Rossing, W.A.H., Lantinga, E.A. y Van Keulen, H. 2003. Exploring the potential for improved internal nutrient cycling in dairy farming systems, using an ecomathematical model. NJAS - Wageningen Journal of Life Sciences, 51:165.

Gupta, S.R. y Singh, J.S.1981. The effect of plant species, weather variables and chemical composition of plant material on decomposition in tropical grassland. Plant and Soil. 59:99.

Hakamata, T. e Hirashima, T. 1978. Studies on nutrient cycles and fertilization of pasturage. I. Outline of the cycles of nitrogen, phosphorus and potassium and model of nitrogen cycle. J. Japan. Grassl. Sci. 24:48.
Haynes, R.J. y Williams, P.H. 1993. Nutrients cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy. 49:119.
Henzell, E.F. y Ross, P.J.1973. The nitrogen cycle of pasture ecosystem. En: Chemistry and Biochemistry of Herbage. Vol. 2. Ed. G.W. Burton and R.W. Bailey. Pp. 227-246. Academic Press, London.

Hernández, L, Sánchez J.A. y Lazo, J. 1998. Caracterización espacial de la biomasa subterránea en pastizales del Instituto de Ciencia Animal. Acta Botánica cubana. No 116. Instituto de Ecologia y Sistemática.

Hernández, A., Ascanio, M.O, Morales, M y Cabrera, A. 2005. Correlación de la nueva versión de la clasificación genética de los suelos de Cuba con las clasificaciones internacionales y nacionales: una herramienta útil para la investigación, docencia y producción agropecuaria. Ed. Instituto Nacional de Ciencias Agrícolas. La Habana, Cuba. 62 p.
Herrera, J., Losada, I. y Ávila, M. 1977. Estudio bioclimático básico del Instituto de Ciencia Animal. Bol. Téc. p. 1-32.

Herrera,R.S., González, S.B., Ardí, C., Pedroso., D.M., García, M., Senra. A., Ríos, C., Irigoyen, E.C. y Cuesta, A. 1980. Análisis químico del pasto. Metodología para tablas de composición. ICA, La Habana, Cuba.

Herrera, R.S.1981. Influencia del fertilizante nitrogenado y la edad de rebrote en la calidad del pasto Bermuda cruzada (Cynodon dactylon vc. Coasy cross-1). Tesis Dr. en Ciencias Agrícolas. Instituto Superior de Ciencias Agropecuarias de La Habana. Instituto de Ciencia Animal, La Habana, Cuba. 145 p.

Hirata, M., Sugimoto, Y. y Ueno, M. 1987. Distribution of dung pats in ungrazed areas in Bamagrass (Paspalum notatum Flügge) pasture. J. Japan. Grassl. Sci. 33.128.

Hirata, M., Sugimoto, Y y Ueno,, M. 1988 ${ }^{\text {a }}$. Effect of cattle dung deposition on Energy and Matter flows in Bahíagrass (Paspalum notatum Flugge) Pasture. I. Changes in sward height and consumed herbage as related to rate of dung disappearance. J. Japan. Grassl. Sci., 33:371.

Hirata, M., Sugimoto, Y y Ueno,, M. 1990. Productivity of Energy Efficiency of Bahía grass (Paspalum notatum Flügge) Pasture. III. Rate of increasing in energy and mass of plant parts. Bulletin of the Faculty of Agriculture, Miyazaki University, 36:383.

Holman, F. 2001. El uso de modelos de simulación como herramienta para la toma de decisiones en la promoción de nuevas alternativas forrajeras. El caso de Costa Rica y Perú. XVI Reun. Latinoamericana de Producción Animal (ALPA). Montevideo, Uruguay. P. 28.

Hogg, D.E.1981. A lysimeter study of nutrient from urine and dung applications on pastures. N.Z. JI. Exp. Agric. 9:39.

Hutchings, N.J., Olesen, J.E., Petersen, B.M. y Bernsen, J. 2007. Modelling spatial heterogeneity in grazed grassland and its effects on nitrogen cycling and greenhouse gas emissions. Agriculture, Ecosystem and Enviroment, 121:152.

Hutton, J.B., Jury, K.E. y Davies, E.B. 1967. Studies of the nutritive value of New Zealand dairy pastures. V. The intake and utilization of potassium, sodium, calcium, phosphorus, and nitrogen in pasture herbage by lactating dairy cattle. N. Z. J. Agric. Res. 10:367.

Isemeyer, H. 1952. Eine einfache methode zur bestimmung der bodenatmung und der karbonate im bodem. . In Kassem Alef and Paolo Nannipieri (Eds.): Methods in Applied Soil Microbiology and Biochemistry. New York, Academic Press: 215-217.

Jackson, M.L 1970. Análisis químico de suelos. Univ. De Wiscousin. 662p.
Jarvis, S.C. 1993. Nitrogen cycling and losses from dairy farms, soil use and management. 9:99.

Jiuanjui, P.L., Xingguo, H., Sun, O.B. y Zhou, H. 2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied soil Ecology, 34:266.

Joblin, K.N. y Keogh, R.G. 1979. The element composition of herbage at urine patches sites in a ryegrass pasture. J. agric. Sci. (Cambridge), 92:37.

Kirk, L.E., Stevenson, T.M. y Clarke, S.E. 1989. Crested wheat grass. Publ. 592. Fmrs Bull. 44. Canada Dep. Agric. p. 22.

Kishi, H y Ishii, K. 1978. Effect of speed of rotational grazing on growth of steers. J. Japan. GrassI. Sci. 24:57.

Koukoura, Z., Mamolos, A.P. y Kalburtii, K.L. 2003. Decomposition of dominant plant species litter in a semiarid grassland. Applied Soil Ecology, 23:13
Li, Lu- Jun., Zeng, De-Hui., Yu, Zhsn-Zhan-Yuan., Fan, Zhi-Ping., Yang, Dang.- Liu y Yuri-Xia. 2011. J. of Arid Enviroment, 75:787.

Lobo, J.M y Veiga, C.M.1990. Interés ecológico y económico de la fauna coprófaga en pastos de uso ganadero. Ecología, No. 4. 313.

Lockyer, D.R y Whitehead- D.C. 1990. Volatilization of ammnonia from cattle urine applied to grassland. Soil Biology and Biochemistry, 22:1137.

Lupwayi, N. Z., Girma_M. y Haque_ I. 2000. Plant nutrient contents of cattle manures from small-scale farms and experimental stations in the Ethiopian highlands. Bioresorce Technology, 91:159.
MacDiarmid, B.N. y Watkin, B.R. 1971. The cattle dung patch. I. Effect of dung on yield and botanical composition on surrounding and underlying pasture. J. Br. Grassl. Soc. 26:239.
MacDiarmid, B.N. y Watkin, B.R. 1972a. Distribution and rate of decay of dung patches and their influence on grazing behaviour. J. Br. Grassl. Soc. 27:48.
MacDiarmid, B.N. y Watkin, B.R. 1972b. Effect of dung patch on the chemical status of the soil and ammonia losses from the patch. J. Br. Grassl. Soc. 27:43.
Mader, P.; Flipbach, A.; Dubois, D.; Gunst, L.; Fred, P \& Niggli, U. 2002. Soil Fertility and Biodiversity in Organic Farming Science, 296:57.
Martín, P.C. 1997. Tablas tropicales de composición de alimentos. Folleto impreso. ICA. La Habana, Cuba.
Martínez, O.2001. ¿Cómo guardar alimento para la seca con la hierba elefante CT115?. En: Manual Agro-red para la ganadería. Agrotecnica y Producción de alimentos. ICA y MINAGRI. La Habana, Cuba.
Marsh, R. y Campling, R.C.1970. Fouling of pastures by dung. Review Article. Herb. Abstr. 40:123.

Melillo, J.M., Aber, J.D. y Muratore, J.F.1992. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology. 63:621.
Mesa, A. y Suárez, O. 1986. Los suelos ganaderos en Cuba. En. Los Pastos en Cuba. Tomo 1. Producción. EDICA, C. de La Habana. Cuba. p. 48:102.
Murgueitio, E.R. e Ibrahim, M. 2003. Agroforestería pecuaria para la reconversión de la ganadería en Latinoamérica. En: Retos futuros. Módulo V. Curso internacional "Ganadería, Desarrollo Sostenible y Medio Ambiente". Ed. Fernando Funes. IIPF. ICA. NCTR/IAC. La Habana, Cuba.
Murphy, W.M., Mena Barreto, D., Silman. J.P. y Dindal. D.L. 1995. Cattle and sheep grazing effects on soil organisms, fertility and compaction in a smooth-stalked meadow grass dominant white clover sward. Grass and Forage Sci. 50:191.

Muys, C., Lust, N. y Granval, P.H.1992. Effects of grassland afforestation with different tree species on earthworm communities litter decomposition and nutrient status. Soil Biol. Biochem. 24:12.

Myers, H.E. y Anderson, K.L.1982. Bromegrass toxicity vs. Nitrogen starvation. J. Amer. Soc. Agron. 74:770.
Nennich, T.D., Harrison, J.H., VanWieringen, L.M., St-Pierre, N.R., Kincaid, R.L., Wattiaux_M.A., Davidson_D.L., y Block 2_{2} E. 2006. Prediction and Evaluation of Urine and Urinary Nitrogen and Mineral Excretion from Dairy Cattle. J. of Dairy Science, 89:353.
Oenema, O.; Oudendag, D. \& Velthof, G.L. 2007. Nutrient losses from manure management in the European Union. Livestock Science. 112:261.
Oniani, O.G. 1964. Determinación del fósforo y potasio del suelo en una misma solución de los suelos Ktasnozen y Podsólicos en Georgia. Agrojimia 6:25.
Ortega, S.F. 1982. La Materia Orgánica de los suelos y el Humus de los suelos de Cuba. Editora de la Academia de Ciencias de Cuba, La Habana, Cuba. 129 p.
Ortiz, S.F. 1983. Pastos y salud bovina. En: Los Pastos en Cuba, Tomo II Utilización. Ugarte et al (Eds). Editorial del Instituto de Ciencia Animal (EDICA). La Habana, Cuba. 657 p.
Ortiz, J. 2000. Modelación y simulación matemática del reciclaje de N, P y K en sistemas de pastoreo vacuno en Cuba. Tesis en opción al grado de doctor en Ciencias agrícolas. 118 p .
Palm, C.A. y Sánchez, P.A. 1990. Decomposition and nutrients release patterns of the leaves of three tropical legumes. Biotropica. 22:330.
Paneque, V. 2005. Manual de Prácticas de Suelos. Universidad de La Habana. 180 p.
Paretas, J.J. 1976. Uso del nitrógeno en pastos tropicales. Tesis de grado. Universidad de La Habana, Cuba.
Pavlychenko, T.K.1982. Root system of certain forage crops in relation to management of agricultural soils. Publish. 1088. Canad. Nat. Res. Couns. p. 46.
Pentón, G. 2000.Efecto del sombreo de los árboles sobre el pastizal en un sistema semi natural. Tésis de Maestría en Pastos y Forrajes. Universidad de Matanzas, Cub

Petersen, R.G., Lucas, H.H. y Woodhouse, W.W. 1956a. The distribution of excreta by freely grazing cattle and its effect on pasture fertility. I. Excretal distribution. Agron. J. 48:440.

Petersen, S.O.; Sommer.; Béline, F.; Burton, C.; Dach, J.; Dowson, J.Y.; \& Mihelic,R. 2007. Recycling of livestock manure in a whole-farm perspective. Livestock Science. 112:180

Pfitzenmeyer, C. 1971a. Estude de e evaluation du potassium dans les taches d urine su pasturage. Fourrages. 48:11.
Powell, J.M., Gourley, C.J.P., Rotz, C.A. y Weaver, D.M. 2010. Nitrogen use efficiency: A potential performance indicator and policy tool for dairyfarms. Enviromental Sciences and Policy. 13:217.

Ramos, 1987. Contribución al estudio de especies y variedades del género Cynodon para la producción de forrajes. Tesis Dr. Cs. Agric. Inst. Sup. Cienc. Agrop. La Habana, Cuba.

Rappaport, J.1988. Onderzolkingen over de ontwilkkeling der wortels bij Lollium perenne L. (investigations on the development of roots of Lollium perenne L.). Meded. Landb Hoogesch, Gent. 56:121.

Rodríguez, I., Crespo, G. y Fraga, S. 1998. Estudio de la descomposición de bostas vacunas en condiciones de pastoreo. Informe Departamento de Pastos. Instituto de Ciencia Animal. La Habana, Cuba.

Rodríguez, I. 2001. Influencia de las excreciones de vacas lecheras en el agroecosistema de pastizal. Tesis de Dr. en Cs. Instituto de Cienc. Animal, La Habana, Cuba.

Rodríguez, I., Crespo, G., Rodríguez, C y Fraga, S. 2002. Comportamiento de la macrofauna del suelo en pastizales con gramíneas naturales o intercalada con leucaena para la ceba de toros. Rev. Cubana Cienc. Agrí.. 36:181.
Rodríguez, I., Crespo, G., Fraga, S. y Prieto, D. 2003. Actividad de la macrofauna y la mesofauna en las bostas durante su proceso de decomposición. Rev. Cubana Cienc. Agríc. 37:319.

Rodríguez, I., Crespo, G., Torres, V y Fraga, S. 2003. Distribución de las bostas vacunas en dos agroecosistemas de gramíneas mejoradas y árboles en el trópico. Rev. Cubana Cien. Agríc. 37:73.
Rodríguez,I. 2004. Evaluación del impacto de los sistemas ganaderos actuales en el recurso suelo en la provincia Habana. Informe Final de Proyecto, CITMA. La Habana, Cuba, 62 pp.
Rodríguez, I., Crespo, G., Torres, V. y Fraga, S. 2005. Efecto de las bostas y la orina en la composición química del pasto y su efecto en el suelo en condiciones de pastoreo o no. Rev. Cubana Cienc. Agríc. 39:305
Rodríguez, I., Crespo, G., Torres, G., Calero, B.m, Morales, A., Otero, L., Hernández, L., Fraga, S., y Santillán, B. 2008. Evaluación integral del complejo suelo-planta- animal en una unidad lechera, con silvopastoreo, en la provincia La Habana. Rev. Cubana Cien. Agríc. 42:403
Ruiz; T. y Febles, G. 1999. Sistemas silvopastoriles; Conceptos y tecnologías desarrolladas en el Instituto de Ciencia Animal de Cuba. Ed. EDICA. Instituto de Ciencia Animal. La Habana, Cuba. p. 34
Russell, E.J.1950. Soil conditions and plant growth. Pp. $635,8^{\text {th }}$ edn. By E.W. Russell, London; Longmans Green and Co.
Saarijarvis, K., Mattila, P.K. y Virkajarvi, P. 2006. Ammonia volatilization from artificial dung and urine patches measured by the equilibrium concentration technique (JTI method). Atmospheric Enviroment, 40:5137.
Saggar, S., Giltrap, D.L., Li, C. y Tate, K.R. 2007. Modelling nitrous oxide emissions from grazed grasslands in New Zealand. Agriculture, Ecosystem and Enviroment, 119:205.

Sánchez, P.A, Palm, C.A., Szott, L.T., Cuevas, E. y Lal. R. 1989. Organic input management in tropical agroecosystems. En: Dynamics of Soil Organic Matter in Tropical Ecpsystems (D.C. Coleman. J.M. Oades y G. Uehara Eds).. Univ. of Hawai Press. Honolulu. Pp. 125-152.
Sánchez, R.M. y Febles, I. 1999. Análisis descriptivo de la conducta de vacas Holstein en pastoreo bajo sombra natural. Rev. Cubana Cienc. Agríc. 33:199.

Sauchelli, V. 1970. Química y Tecnología de los abonos nitrogenados. Ediciones Ariel, Barcelona, España.

Saunders, W.M.H. 1984. Mineral composition of soil and pasture from areas of grazed paddock, affected and unaffected by dung and urine. N. Z. JI. Abrid. Res. 27:405.

Schipper, L.A. \& Sparling, P.P. 2000. Performance of Soil Conditions Indicators across Taxonomic Groups and Land Uses. Soil Science Soc. of America J. 64:300-311
Scholefield, D.; Lockyer D.R.; Whitehead, D.C.\& Tyson, K.C. 1991. A model to predict transformations and losses of nitrogen in UK pastures grazed by cattle. Plant and Soil 132: 165-177.

Smell, F.D. y Smell, C.T. 1954. Colorimetric methods of analysis. $3^{\text {th }}$ Ed. New York.
Snayden, R.W.1981. The Ecology of grazed pastures. En. Morley, F.H.W. (de.). Grazing Animals (World Anim. Sec.). Elsevier Scientific Publishing Co. Amsterdam, Netherlands. 31 p.

Socorro, A.R. 2002. Gestión de la Agricultura Urbana y Peri urbana en la Ciudad de Cienfuegos, Cuba. En Encuentro Internacional de Instituciones y Organizaciones Promotoras de la Agricultura Sostenible. Ciencias Agrarias, Universidad de Cienfuegos, Cuba. ISBN 959-257-038-8.

Simpson, J.R y Stobbs, T.H. 1981. Nitrogen suply and Animal production from pastures. In: Morley, F.H.W. (ed.). Grazing Animals (World Animal Science; B1). Elsevier Scientific Publishing Co., Amsterdam, Netherlands. 261 p.

Suárez, J.J., Senra, A. y Galindo, J. 1981. Estudio del aporte de nutrientes por las heces de vacas en tres sistemas de pastoreo rotacional. Rev. Cubana Cienc. Agri. 15:91

Suguimoto, M., Hirata,M. y Ueno, M. y 1987c. Energy and Matter Floiws in Bahíagrass Pasture. VI. Nitrogen excretion in dung and urine by Holstein Heifers. J. Japan. Grassl. Sci. 33:121.

Sugimoto, M., Hirata, M. y Ueno, M. 1991. Effect of cattle dung deposition on energy and matter flows in Bahía grass (Paspalum notatum Flugge) pasture. V. Nitrogen flow. J. Japan. GrassI. Sci. 36:376.

Sugimoto, M., Ball, R.R. y Theobald, P.W. 1992. Dynamics of nitrogen in cattle dung on pasture under different seasonal conditions. I. Breakdown of dung and volatilization of ammonia. J. Japan. Grassl. Sci. 38: 160.
Suzuki, A., Sigawara, K. y Ito, I. 1991. Difference in potassium dynamics between grazing and cutting grasslands. J. Japan. Grassl. Sci. 36:404.

Tate, R.L.1987. Soil Organic Matter - biological and ecological effects. John Willey and Sons. New York.

Thomas, R.J. 1992. The role of the legume in the nitrogen cycle of productive and sustainable pastures. Grass \& Forage Science. 47, 133-142.
Thomas, R.J y Asakawa, M.M.1993. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol. Bioch. 25:1351.

Thompson, L.M. 1966. El Suelo y su Fertilidad. III Ed. Editorial Reverté, S.A. Barcelona, España.

Thorrnley, J.H.M. 2001. Modelling grassland ecosystems. Proc. XIX Intern. Grassid Congr. Brasil. P. 25

Tian, G.1992. Biological effects of plant residues with contrasting chemical composition on plant soil under humid tropical conditions. PHD Thesis. Wageningen Agricult. Univ. Printed by Netherlands Grafish Service.

Tian, G., Brussard, L. y Kand, B.T. 1993. Effects of plant residues with contrasting chemical composition under humid tropical conditions: decomposition and nutrients release. Soil Biol. and Biochem. 24:1051.

Tsuji, T. y Haramaki, O. 1976. The composition of minerals in the excreta of adult dairy cattle and its relationships to that of grass. J. Japan. Grassl. Soc. 33:189.
Troughton, A. 1957. The underground organs of herbage grasses. Bull. N. 44. Common. Bur. of Pastures and Field Crops, Hurley, Berkshire.

Underhay, V.H.S. y Dickinson, C.H. 1979. Water, mineral and energy fluctuations in decomposing cattle dung pats. J. Br. Grassl. Soc. 33:189.

Vallis, I., Harper, L.A. y Catchpoole, V.R. 1982. Volatilization of ammonia from urine patches in a subtropical pasture. Austr. J. Agric. Res. 33:97.
van Fassen, H. y van Dijk, H.1987. Manure as a source of nitrogen and phosphorus in soils: In: Meer, H.G. v. d. (ed.). Animal manure on Grassland and Fodder Crops. Martinus Nijhoff Publishers, Dordrecht, Netherlands. P. 27-45.

Van Soest, P.J. y Wine, R.H. 1968. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell wall constituents. J. of the Association of Official Agricultural Chemists. 50:50.
Voisin, 1961. Los excrementos son un factor importante para mejorar la flora. Dinámica de los pastos. Ed. Tecnos, S.A. Madrid. 223 p.
Watson, E.R. y Lapins, P. 1969. Losses of nitrogen of urine on soil from South-Eastern Australia. Eust. J. Exp. Anim. Husb. 9:85.
Weinmann, H.1988. Productivity of Marandellas sandvelv pastures in relation to frequency of cutting. Rhod. Agric. J. 85:175.
Weeda, M.C. 1988. The effect of cattle dung patches on psture growth, botanicl composition and pasture utilization. N.Z.J. Agric. Res. 10:150.

Weiss, W. p. and D. J. Wyatt. 2004. Macromineral digestion by lactating dairy cows: Estimating phosphorus excretion via manure. J. Dairy Sci. 87:2158-2166.

Withehead, D.S. 1970. The role of nitrogen in grassland productivity. A review of information from temperate region. Bull. 48. Common. Bur. Pastcrops. Hurley, Berkshire, England.

Wilkinson, S.R. y Lowrey, R.W. 1973 Cycling of Mineral Nutrients in temperate ecosystem. In: Butler, G.W. and Bailey, R.W. (Eds.). Chemistry and Biochemistry or Herbages. Vol. 2. Academic Press, London, UK. 315p.
Yágodin, B.A.1982. Agroquímica. Tomo I (edición en español). Editorial Miz, Moscú, URSS.

Yates, M.E. y Jacques, W.A. 1988. Root development of some common New Zealand pasture plants. N.Z.J. Sci. Technol. Sect. A. 69:249.

ANEXOS

ANEXO 1
 Manual de usuario del programa "Reciclaje"

I. Introducción.

El programa RECICLAJE, constituye el soporte informático de un prototipo de modelo de simulación del ecosistema de pastoreo vacuno, el cual se definió con el objetivo de estimar el balance anual de N, P y K a nivel del sistema y sus componentes, así como evaluar diferentes alternativas productivas, disminuyendo con esto los riesgos en el proceso de toma de decisiones. A partir de la definición del modelo de simulación se realizó un minucioso proceso de análisis y diseño de sistema, cuyos resultados sirvieron de base para la implementación en microcomputadora del modelo propuesto.

El modelo computacional se desarrolló acorde con las convenciones de la ingeniería de software, siguiendo una estructura precisa en el análisis, diseño, programación y mantenimiento del sistema, con especial énfasis en tres aspectos de la calidad: los atributos de operación, facilidad de cambios en el diseño y flexibilidad de implementación.

Se utilizó el método de Prototipo Orientado a Objeto para el análisis y diseño del sistema, en correspondencia con los objetivos del modelo, los aspectos de calidad preestablecidos y la problemática que aborda la simulación. La programación se efectuó con el lenguaje Borland Delphi versión 5.0, sobre el sistema operativo Windows 95, utilizando las bondades de esta plataforma de programación y a la vez, satisfaciendo todos los requerimientos definidos en las etapas previas.

Este programa ha sido avalado como una herramienta muy útil para los productores e investigadores pecuarios, ya que permite estudiar el comportamiento anual de la dinámica del N, P y K en los sistemas de pastoreo vacuno, así como evaluar diferentes alternativas productivas, como ayuda en la toma de decisiones y a la vez, garantiza la independencia del programa respecto a las características particulares de la unidad
productiva que se estudie. De forma análoga, en la docencia es utilizado para simular situaciones que en la práctica académica serían imposibles de mostrar.

Con el presente manual de usuario, se tiene como objetivo proporcionar a los usuarios finales del programa Reciclaje, ya sean productores, estudiante, docentes o investigadores, una guía general de cómo explotar con eficiencia dicho programa, independientemente de que la propia ayuda del software brinda información suficiente sobre las diferentes opciones del mismo. Disponiendo del presente documento, para utilizar de forma adecuada el programa, el usuario final sólo requiere, adicionalmente, estar medianamente familiarizado con el uso del sistema operativo Windows y algunas de sus aplicaciones.
II. 1 Instalación del programa.

El nombre del programa es Reciclaje (.exe) y se distribuye en 4 discos floppy de $31 / 2$ pulgadas y 1.44 MB de capacidad, conteniendo un programa de instalación preparado con el utilitario Install Shields Express, este último ofertado en el sitio www.istallshield.com/express de Internet.

Para realizar la instalación del programa, se coloca en la unidad de disco floppy el primero de los cuatro discos de instalación y luego, se ejecuta el programa Setup (.exe), iniciándose el proceso que durará varios minutos. Mientras se efectúa la instalación, se muestran en varias pantallas información sobre el proceso, las cuales se describen brevemente a continuación, según su orden de aparición:

1. Información sobre el inicio del proceso de instalación (obviar).
2. Información relacionada con la licencia del programa (obviar).
3. Se solicita especificación sobre la carpeta de destino donde se instalara el programa y las bases de dato que este requiere (se recomienda mantener las especificaciones implícitas).
4. Especificar el Folder al que se desea asignar el acceso directo al programa. Si se omite se crea uno nuevo con nombre Reciclaje en la opción Programa del menú inicio de Windows (recomendable).
5. Indica que se coloque el disco \# 2 de instalación.

6．Indica que se coloque el disco \＃ 3 de instalación．
7．Indica que se coloque el disco \＃4 de instalación．

Al concluir la instalación，en la carpeta de destino se encontrará el fichero ejecutable （Reciclaje．exe），las bases de datos que requiere el programa y dos ficheros de configuración．Además，de acuerdo con lo que se especifique en la pantalla 4，se tendrá definido un acceso directo al programa Reciclaje，a través del cual este último podrá ser ejecutado sin dificultad．
II． 2 Requerimientos de información para utilizar el programa．
El programa está diseñado para estimar el balance anual de los nutrientes nitrógeno， fósforo y potasio en una unidad de producción vacuna，pudiendo ser una vaquería comercial，una pequeña granja u otro sistema productivo，con los siguientes requerimientos mínimos de información para su aplicación：

3 Conocimiento de la estructura y comportamiento del rebaño bovino en el año．
3 Conocimiento de las áreas de pastoreo y la composición de especies de pastos en el pastizal．

II． 3 Requerimientos de hardware del programa．

Para la instalación y explotación del software se requiere de la siguiente configuración mínima：

田 Una microcomputadora PC 486 o superior．
田 Sistema Operativo Windows 95 o superior．
田 Disco duro con 2．5 MegaBytes（MB）de espacio libre．

T Opcionalmente una impresora．

II． 4 Estructura del programa．

En la figura 1 se muestra la estructura del programa, ubicándose de izquierda a derecha los diferentes niveles de opciones, de manera que las cinco opciones principales del sistema son Archivo, Edición, Balance, Base de Datos y Ayuda, a partir de las cuales se definen otros submenúes. En el presente material se describen todas las opciones del programa.

II. 5 Generalidades del programa.

Después de estar el programa instalado, se activa a través del acceso directo correspondiente, apareciendo a continuación una pantalla con un menú con las opciones principales del sistema y la barra de herramienta. En la figura 2 se muestra como ejemplo la parte superior de esta primera pantalla, en la cual se aprecia que se encuentran inhabilitadas las opciones Edición y Balance y los últimos seis botones de

Figura 2. Ejemplo de la primera pantalla.
la barra de herramienta.
De forma general, como sucede típicamente con las aplicaciones desarrolladas sobre Windows, las diferentes opciones pueden ser seleccionadas de varias formas: señalando con el puntero del mouse la opción y presionando la tecla derecha de este (clic derecho) o presionando simultáneamente las teclas <ALT> y <LetraSubrayada>, correspondiéndose esta última con la letra destacada de la opción (subrayada). Para aquellas opciones que se utilizan con mayor frecuencia, en la barra de herramientas del sistema aparecen botones que aceleran su selección. Lo anterior será indicado en cada opción particular.

II.5.1 Opción Archivos.

Representa un menú con las opciones típicas del manejo de ficheros que aparecen en las aplicaciones sobre Windows, pudiéndose acelerar su selección mediante la
combinación de las teclas <ALT> <A>. A continuación se describen las responsabilidades de cada una de las diferentes opciones de este menú.

Archivos|Nuevo: estando desplegado el menú Archivo y seleccionarse esta opción, se asume que se desea iniciar el estudio de una unidad organizativa, presentándose una pantalla para la edición de los datos generales de dicha unidad.

Figura 3. Ejemplo de la pantalla de edición de datos generales.
La información que es solicitada en esta pantalla sólo se requiere para los reporte de salida del programa, por lo tanto, no resulta transcendente para la ejecución del programa, pero se recomienda como norma de trabajo con este sistema actualizar adecuadamente los datos con las generales de la unidad, facilitando de esta forma la organización del trabajo. La figura 3 muestra un ejemplo de esta pantalla con la información de una unidad que se presentara al final como caso de estudio.
(3) Archivos|Abrir: abrir un archivo de datos creado con el programa que se encuentra guardado en disco, pudiéndose activar mediante el botón de la barra de herramienta indicado. En caso de conexión en red, se puede acceder a cualquiera de
las máquinas conectadas y en cualquiera de los casos, el fichero tendrá como extensión ".rec".

En la figura 4 se muestra, a través de un ejemplo de aplicación, la utilización de esta opción, la cual es típica en las aplicaciones sobre Windows. En el caso del ejemplo se está indicando que se desea abrir el fichero con nombre Genético4ICA, el cual tiene la extensión que se impone por el programa (.rec).

Figura 4. Ejemplo de pantalla correspondiente a la opción $\underline{\text { Abrir. }}$

Archivos|Guardar: guarda en disco el fichero de datos abierto o crea uno nuevo en caso de no haber sido definido antes, previéndose la conexión en red. Se puede acelerar con el tercer botón de la barra de herramienta y al ser seleccionada, se muestra una pantalla análoga a la anterior (figura 4). El usuario podrá asignarle cualquier nombre válido al fichero, pero el programa le impone la extensión (.rec).

Archivos|Guardar Como...: muy similar a la anterior opción, suponiendo un cambio de nombre del archivo y/o del disco destino del resguardo.
Archivos|Cerrar: cierra el archivo de datos abierto.
Achivos|Imprimir: imprime el reporte del balance de los nutrientes a nivel del sistema y sus componentes, a partir de la información correspondiente a la variante que se encuentre activa. Mayor información al respecto se brinda en la opción Balance.
 devuelve el control al sistema operativo.

II.5.2 Opción Edición.

En el diseño del programa se contempló la evaluación de diferentes alternativas productivas, llamadas variantes. Este requerimiento se cumple mediante la generación de pestañas para cada alternativa productiva diferente (variantes), lo que forma parte de Edición, segunda opción en el menú principal, la cual agrupa las responsabilidades relacionadas con la edición de los datos del archivo activo, tal como se describen a continuación:

Edición|DGatos Generales: genera una ventana para la edición de los datos generales de la unidad objeto de estudio, donde se incluye información sobre el nombre y ubicación, así como, el tipo de organización y tipo de producción. Estos datos no son relevantes al sistema y sólo se utilizan para encabezar los reportes de salida. La figura 3 muestra un ejemplo de la ventana de edición de datos generales.

閣 Edición|Variante: edición de los datos correspondiente a una de las variantes generadas (alternativas para la simulación), las cuales se identifican por pestañas individuales, entre las que siempre estará una activa. La variante activa (pestaña del primer plano) recibe el efecto de la acción que se indique.

En el caso particular que se muestra en la figura 5, ha sido activada la opción Edición|Variante, generándose una pestaña con el identificador Variante 1, que representa una alternativa productiva, formada por un conjunto de valores que deben tomar las diferentes variables asociadas a la pestaña, en este caso la número 1 (Variante 1).

La pestaña de edición esta dividida en cinco paneles, identificados con los títulos Cantidad de Animales, Pastos, Excreciones, Suplementación y Fertilización. En cada uno de estos paneles, se agrupan las variables de entrada que guardan una mayor relación entre sí, muy en correspondencia con el título asignado al panel. A continuación, se describe cómo proceder para la edición de cada variante particular a través de cada uno de estos paneles.

Figura 5. Ventana correspondiente a la opción E्dición|Variante.
En el panel CANTIDAD DE ANIMALES, se agrupan todas variables relacionadas con la estructura y comportamiento productivo del rebaño. Para cada una de las categorías de vacuno: Vacas, Toros, Bueyes, Novillos, Añojas y Ternero, se requiere introducir la cantidad promedio de animales/categoría que se tuvo en el año a evaluar, según el comportamiento productivo de la unidad objeto de estudio. Por ejemplo, en el caso que muestra la figura 5 , se asume un rebaño con 137 vacas, 3 toros y 39 terneros como media anual en la unidad, mientras que de las restantes categoría no se tuvo animales, asumiendo las variables correspondientes el valor cero.

En este propio panel aparece el botón (423 ${ }^{-1}$ Producto Animal que agrupa las variables que caracterizan la producción de los animales, las cuales aparecen en la ventana que se despliega a partir de su activación (figura 6.). Este botón sólo se habilita si se indicó la existencia de animales en alguna de las categorías.

Q Producción
Valores Promedios
Ganancia o Perdida (Kg de PV/año)

Figura 6. Pantalla de edición de las variables relacionadas con la producción animal.
Como se aprecia en la ventana de la figura 6, aquí se solicitan los valores de las variables que representan la Ganancia o Perdida de Peso Vivo para cada una de las categorías de animales, expresado en kilogramos. Estas variables aceptan valores decimales con dos dígitos después del punto, pero solamente se puede editar en aquellas categorías que se le asigno valor en la pantalla anterior.
En el ejemplo que se señala en la figura 5, sólo se tiene animales de las categorías
Vacas, Toros y Terneros, y entonces, al activar en este caso el botón Producto Animal se visualiza la ventana correspondiente (figura 6), pero aquí esta inhabilitada la edición de las variables asociadas a las categorías de las cuales no se tiene animales, es decir aquella en las que se asume que cantidad de animales es igual a cero, como sucede con Bueyes, Novillas y Añojos en este ejemplo. En esta propia ventana (figura 6) se
solicitan los valores de las variables Producción de leche y Total de Nacimientos, las cuales sólo pueden tomar valores enteros positivos.

De forma análoga a como se procede con la variable Ganancia o Pérdida de PV, sucede con las variables Muerte de animales, Venta de animales y Peso vivo al inicio del año, las cuales representan, el número de animales de cada categoría que salen de la unidad productiva en el año, por causa de muerte, de igual forma por causa de venta y el valor del peso vivo promedio de cada categoría al inicio del año que se estudia, respectivamente. Las dos primeras se expresan en valores enteros positivo y la tercera, en notación decimal con dos dígitos después del punto (ver el ejemplo de la figura 6).

En el panel PASTOS, aparecen dos Radio Button (botones excluyentes de una misma selección), los cuales permiten especificar la unidad de superficie en que serán expresadas las variables que representan valores de esta naturaleza. Los dos posibles valores son hectárea y caballería, asumiéndose el primero como implícito, el cual puede ser cambiado mediante un clic derecho del mause sobre el radio button deseado.

En el propio panel, se solicita el valor de la variable Area total de Pastoreo, que puede tomar un valor decimal y representa la superficie total que ocupan las áreas que son pastadas por los animales, en la cual no se debe incluir aquellas áreas que en algunas unidades utilizan para las producciones de alimentos suplementarios como caña de azúcar, algunas especies de pastos que sólo se utilizan para la producción de forrajes, autoconsumo, etc. Esta superficie se expresa en hectárea o caballería, de acuerdo al tipo de unidad que haya sido preestablecido.

El botón Rendimiento despliega una ventana (figura 7) para captar los valores de las variables Categoría Agroproductiva y Cantidad de Lluvia. La primera, representa la categoría agroproductiva de los suelos dedicados al pastoreo, por tanto sólo puede tomar valores enteros positivos entre 1 y 10, asumiendo de forma implícita el valor 6 ya que la mayoría de los suelos dedicados a la ganadería en Cuba, poseen esta categoría de agroproductividad. La edición de este dato a través del SpinEdit resulta muy cómoda. La segunda de estas variables, siempre se le asignará el valor correspondiente al régimen de lluvia para la unidad en el año a evaluar, lo que se expresa en término de la cantidad de milímetros de lluvia que cayeron en el año, por lo
tanto, tomará valores enteros mayores que cero.

Figura 7. Ventana que se despliega con la selección Rendimiento en el panel Pastos.
Por último, en este panel (PASTOS) se tiene un botón 氰Especies el cual esta implementado para especificar las especies de pastos que determinan la composición botánica de las áreas dedicada al pastoreo en la unidad productiva, la selección se efectúa dentro de la base de datos de pastos (Pastos.DBF) que utiliza el programa. A tales efectos, con la selección de este botón se despliega una nueva ventana para la selección de los pastos (figura 8).
En la ventana para la selección de los pastos, se muestran todas aquellas especies que están en la base de datos que contiene la información sobre los pastos, pero aquí solamente es posible seleccionar cada una de las especies que forman parte de la composición botánica de las áreas de pastoreo, siempre y cuando se encuentre en la base de datos. Cualquier actualización que se desee hacer a esta base, el usuario podrá hacerlo por la opción Base de Datos|Pastos navegando a partir del menú principal del programa.

Para la selección en esta ventana (figura 8), el usuario se puede mover con las barras de scroll vertical y horizontal, lo que le permitirá ver todas las especies y sus atributos correspondientes, según sea el estado del fichero PASTOS.DBF. Este fichero se oferta en los discos de instalación con la información de más de 40 especies, pero el usuario podrá personalizar esta información de acuerdo a sus intereses y posibilidades, sobre lo cual encontrará más información en la parte de este manual que se describe la opción Base de Datos.

Figura 8. Ventana para la selección de los pastos.
La ventana de selección de los pastos posee una barra de herramientas con seis botones con las responsabilidades que se señalan en la figura 9, los cuales facilitan la búsqueda y selección de las especies. En general, para la sección de una especie particular, se recorre la base con ayuda de las barras de scroll y los cuatro primeros botones de la barra de herramienta y cuando se encuentra el artículo deseado, como sucedió con la especie de nombre común Mucana en el ejemplo de la figura 8, se activa el botón lo cual indica que se desea incluir esa especie en el estudio. A partir de indicar
la selección de esta especie, se abre una nueva ventana para captar los valores de las variables Superficie y Rendimiento de la Especie que fue seleccionada, tal como se muestra en el ejemplo de la figura 10.

Figura 9. Barra de herramientas de la ventana para la selección de los pastos.

Figura 10. Ventana para la edición de las variables superficie y rendimiento del pasto seleccionado.

Continuando con el propio ejemplo, se indicó la selección de la Mucuna y la nueva ventana que fue desplegada (figura 10), brinda información sobre esta especie (nombre científico y nombre común) y a la vez, solicita que se especifique qué superficie ocupa la especie y cuál fue su rendimiento. La superficie se puede expresar en \% del área total, hectárea o caballería, según se determine por los Radio Button que se muestran en la ventana. Se asume como implícito el \% del área total dedicada al pastoreo. Estas dos últimas variables aceptan valores reales positivos.

En el caso del valor del rendimiento, el programa tiene incorporado un procedimiento, marcadamente subjetivo, mediante el cual se realiza un estimado de este valor y a modo de información, en el panel Rendimiento (TM/há) se brinda el estimado a partir de este procedimiento (modelo), pero el valor estimado por esta vía, sólo se asume como dato de entrada para la variable Rendimiento si el usuario lo especifica mediante el Radio Button correspondiente.
Como se puede observar en la figura 8, tres especies están marcadas con el símbolo , lo cual significa que ya fueron seleccionadas y se le asigno valores a las variables Superficie y Rendimiento de la Especie, correspondiente. En caso el que se desee realizar alguna modificación a estas dos últimas variables de una especie particular, la cual estará marcada, basta con señalar el artículo correspondiente (como se muestra la Mucana en la figura 8) y activar el botón Modificar la selección de la barra de herramienta (figura 9), mostrándose entonces la ventana de edición de estas variables. Si lo deseado es eliminar la selección de una especie ya marcada, se logra convirtiendo en activo el artículo y activando el botón Seleccionar artículo activo.

EXCRECIONES es un pequeño panel donde se le asigna los valores a las variables Porciento de Bostas en depositadas en el pastizal y Porciento de Micciones en el pastizal, las cuales se editan mediante un SpinEdit, tomando ambas como valor implícito 60. Estas variables representan la proporción de cada tipo de excreción que son depositada por los animales en las áreas de pastoreo, respecto al total de cada tipo excretada.

El panel SUPLEMENTOS muestra un CheckListBox con varias entradas, cada una de estas representa a una categoría de suplemento diferente, para un total de trece categorías con una base de dato particular cada una. En la tabla que sigue se presenta las diferentes categorías y el nombre del fichero de base de datos correspondiente.

Diferentes categorías de suplementos utilizadas por el programa y su respectiva base de datos"..

Leguminosas Forrajeras	LegForrajeras.DBF
Henos de Gramíneas	Henograminea.DBF
Ensilados	Ensilados.DBF
Residuos Agroindustriales	ResAgrolnd.DBF
Cereales y Subproductos de	CereaSubpro.DBF
molinería	
Mieles de Caña de Azúcar	
Raíces y Tubérculos	MielCana.DBF
Granos de Oleaginosas	RaicesTuber.DBF
Tortas y Harinas Proteicas	GranosOlea.DBF
Concentrados Comerciales	TortasHarinaProte.DBF
Minerales	ConcentCom.DBF

Para introducir la información sobre los suplementos que serán considerado en la variante, el usuario debe conocer el nombre de cada suplemento y la cantidad de este utilizada, esta última expresada en kilogramos o toneladas. Además debe garantizar que de acuerdo a la categoría del suplemento (tabla 1), este se encuentre en su respectivo fichero, con todos los atributos incluidos en la estructura de tales bases de datos. En caso de no estar incluido en la base de datos, debe ser incluido a través de la opción Base de Datos|Sַuplementos|"CATEGORÍA CORRESPONDIENTE", encontrándose mayor información al respecto en la descripción de Base de Datos del presente manual.

Si ya se conoce que el suplemento se encuentra en una de las bases de datos, se selecciona la entrada que corresponda en el CheckListBox mediante un clic derecho del mouse y entonces, se despliega una nueva ventana, muy similar a la mostrada en la figura 8, en la cual se visualiza los diferentes suplementos que se encuentren en el fichero de base de datos de la categoría seleccionada. Aquí se procede de forma similar a como fue explicado en la selección de las especies de pastos.

Al marcar el suplemento deseado, se despliega una ventana para la lectura de la variable Cantidad Consumida, lo cual puede ser expresado en kilogramos o toneladas. En la figura 11 se presenta un ejemplo de dicha ventana.

Figura 11. Ejemplo de selección de suplemento.
El último panel es FERTILIZACION, en el cual aparece un el botón que hace desplegar una ventana para la selección del fertilizante utilizado y luego, especificar la dosis aplicada y la superficie de aplicación. El procedimiento de trabajo es muy similar al descrito para la selección de las especies de pastos y los suplementos, a partir de una base de datos para los fertilizantes (Fertilizantes.DBF) que se actualiza por la opción Base de Datos|Eertilizantes.

7
Edición|Insertar Variante: genera una nueva variante (pestaña) que tendrá un número de orden y los valores de sus variables, al instante de su generación, se hacen coincidir con la variante activa. La selección de esta opción se puede acelerar utilizando el botón correspondiente de la barra de herramientas. Cuando el usuario selecciona esta opción, tendrá la posibilidad de cambiar uno o más valores de
variables，de manera que estaría representando lo que en este material se le ha llamado una alternativa productiva，diferente de las restantes．
La figura 12，en contraste con lo que se muestra en la figura 5 ，muestra un ejemplo en el que se tienen definidas un total de 5 variantes，identificadas con los números $1,2,4$ ， 5 y 9，lo cual significa que primeramente se seleccionó la opción Edición｜ㅡVariante， generándose la variante inicial（Variante 1）y de esta variante fueron editadas las diferentes variables，de manera tal que el programa validó toda la información y no encontró ninguna inconsistencia．
Entre las validaciones que efectúa el programa al editar cada variante，se pueden citar：
派 \mathcal{Z} Que no sea cero la cantidad de animales en todas las categorías simultáneamente．
㳂后 El área total de pastoreo tiene que ser diferente de cero．

派 La suma de las superficies de todas las especies de pastos seleccionas，no puede ser mayor que el área total de pastoreo．

没㛊 El valor de la superficie y el rendimiento de las especies de pastos seleccionadas tiene que ser mayor que cero．

派 La variable régimen de lluvia no puede ser cero．
波 La suma de los animales que mueren y los vendidos，no puede exceder del total de la categoría correspondiente．

Algunos de estos errores son detectados de forma inmediata y el resto，a partir de activar el botón que se muestra siempre en la pestaña de edición de la variante activa． Por esta razón，sólo es posible generar nuevas variantes y otras acciones relativas a la variante activa，si ha sido activada la acción＂Aceptar＂y el resultado es exitoso，es decir， no se emite ningún mensaje de error．

Figura 12. Ventana correspondiente a la opción Edición|ㅡVariante con varias variantes.
E: Edición|Eliminar Variante: equivalente al botón que se representa en el encabezamiento y con su acción elimina la variante activa en el momento de ser activada esta opción, lo cual se exceptúa para la variante inicial ("Variante 1"). En el ejemplo de la figura 12, han sido eliminadas las variantes número $3,6,7$ y 8 .

Edición/Variables de Estado: despliega una ventana de edición para las variables de estados definidas en el modelo de simulación, permitiendo cambiar los valores, restaurar los predefinido en el diseño del modelo de simulación o predeterminar los nuevos valores.

Estas variables pueden ser editadas según la información del usuario, pero esto no se requiere para la explotación del programa. En la figura 12 se muestra como ejemplo la ventana de edición de las variables de estado, estando activa la pestaña correspondiente a las variables de estado relacionadas con las excreciones.
II.5.3 Opción Balance.

Balance es la tercera opción del menú principal, se habilita sólo cuando existe una variante activa con toda la información validada, en cuyo caso se despliega una ventana de salida de edición (TMemo) que contendrá, el reporte del balance anual de los nutrientes N, P y K al nivel de cada componente en particular y el sistema en general. Los resultados del reporte dependerán de los valores asignados a las variables de la variante activa.

Figura 13. Ejemplo de la ventana de edición de las variables de estado.

II.5.4 Opción Base de Datos.

Base de Datos: brinda la posibilidad de actualizar las bases de datos (BDs) de las diferentes categorías de suplementos (13), de especies de pastos y tipos de fertilizantes, es decir modificar, añadir o eliminar artículos de dichos archivos, de manera que cada usuario puede personalizar estas BDs, ajustándolas a las características particulares de los suplementos, especies de pastos y fertilizantes que se empleen en su unidad productiva. La información que se ofrece en las BDs de
suplementos, así como la clasificación utilizada es la propuesta por García Trujillo y Pedroso en el libro "Alimentos para rumiantes" (1989).

II.5.5 Ayuda.

Es la última opción y brinda una asistencia sobre la explotación del sistema, esta responde a la petición de ayuda a través de la aplicación WinHelp de Windows. Además, en todas las interfaces del sistema se tiene implementada una ayuda sensitiva en línea.

ANEXO 2
 Metodología para la interpretación del grado de fertilidad del suelo en la finca ganadera

En esta metodología se consideran los indicadores pH , materia orgánica, nitrógeno total, fósforo asimilable, calcio, resistencia a la penetración, hojarasca acumulada, infiltración y actividad biológica, los cuales fueron seleccionados (de un total de 29), por medio de las técnicas de análisis multivariado, en muestras de suelos tomadas en 6 vaquerías de la provincia habana.
Como primer paso para estimar el grado de fertilidad general de un suelo se debe realizar el muestreo de suelo para determinar los indicadores propuestos. Una vez que se cuente con esta información se toma en consideración la puntuación que se asigna a cada uno de los indicadores de acuerdo a la interpretación que se le da en la siguiente tabla:

Indicador	Valor en el suelo	Interpretación	Puntuación asignada
	<2.0	Desfavorable	1
	3.5	Medianamente favorable	5
	>5.0	Favorable	10
Nitrógeno total,\%	<0.10	Desfavorable	1
	0.17	Medianamente favorable	5
	>0.25	Favorable	10
	<25	Desfavorable	1

Fósforo asimilable, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{mg} / 100 \mathrm{~g}$	3.5	Medianamente favorable	5
	>5.0	Favorable	10
Calcio, cmol/kg	<35	Desfavorable	1
	70	Medianamente favorable	5
	>100	Favorable	10
$\mathrm{pH}\left(\mathrm{H}_{2} \mathrm{O}\right)$	3.5-4.5	Desfavorable	1
	4.6-5.5	Medianamente favorable	5
	5.5-6.5	Favorable	10
Resistencia a la penetración, $\mathrm{kg} / \mathrm{cm}^{2}$	>11	Desfavorable	1
	8	Medianamente favorable	5
	<4	Favorable	10
Hojarasca, $\mathrm{g} / \mathrm{m}^{2} / \mathrm{mes}$ (en el período lluvioso)	<25	Desfavorable	1
	50	Medianamente favorable	5
	>75	Favorable	10
Infiltración, mm/h	<10	Desfavorable	1
	30	Medianamente favorable	5

	>60	Favorable	10
Actividad biológica (respiración basal), $\mathrm{mg} \mathrm{CO}_{2} / \mathrm{g}$ suelo	<0.5	Desfavorable	1
	1.0	Medianamente favorable	5
		>1.5	Favorable

Al dato analítico de cada indicador determinado en el laboratorio se calculan los puntos que le corresponde de acuerdo al criterio de puntuación que se propone en la tabla. A modo de ejemplo, citamos el siguiente caso:

Ejemplo: Si el análisis de suelo da un contenido de 4% de MO, entonces los puntos que le corresponde a este indicador será:
Si 5% MO vale 10 puntos
4 \% MO valdrá X puntos
entonces: $X=(4 \times 10)_{-} \div 5=8$ puntos
y así se procede para calcular los puntos que le corresponde a los restantes indicadores de acuerdo al valor que da el análisis en el laboratorio.
La puntuación total del grado de fertilidad de cada suelo se obtiene mediante la suma de los puntos calculados para cada uno de los indicadores contemplados.
Entonces el grado de fertilidad del suelo se puede obtener mediante la siguiente fórmula:

GFS $=\sum$ puntos de los indicadores $\times 10$
N
Donde: GFS = grado de fertilidad del suelo
Σ =sumatoria
$\mathrm{N}=$ número de indicadores
(el valor se expresa en \%)

ANEXO 3

METODOLOGÏA PARA LA DETERMINACIÓN EN EL CAMPO DE LA VOLATILIZACIÓN DEL N AMONIACAL EN LAS BOSTAS Y LA ORINA

Conociendo previamente la concentración promedio de N de bostas fresca y orina de los animales, se depositan sobre un pastizal 8 bostas de 2.5 Kg cada una y 8 micciones de 3 litros cada una, recién defecadas por vacas lecheras.

Sobre cada bosta y micción se coloca un tubo plástico de 10 cm de diámetro y 30 cm de alto. En la boca superior de cada tubo se sitúa, cada 24 horas, un papel de filtro previamente embebido con ácido bórico al 4%, el cual se protegió por un pomo de vidrio invertido, ajustado al tubo, para evitar la entrada de agua y el escape de amoníaco. El papel de filtro se retiraba cada 24 horas y en el laboratorio se introduce en un beaker, al cual se añade agua destilada y gotas de bromocresol verde y rojo de metilo. El amoníaco así capturado por la solución bórica en el papel de filtro se valora con ácido sulfúrico 0.02 N , hasta obtener el cambio de color en el punto de viraje..

La determinación de amoníaco desprendido por cada bosta y mancha de orina se hace diariamente, hasta el momento en que no se detecta ningún valor. Al final se suman todos los valores de amoniaco desprendido por cada tipo de excreción y los valores se expresan en \% del N total y el equivalente en $\mathrm{Kg} / \mathrm{ha}$.

ANEXO 4
 RELACIÓN DE ARTÍCULOS PUBLICADOS POR EL AUTOR QUE TIENEN RELACIÓN CON EL CONTENIDO DE LA TESIS

Crespo, G y González, A.1983. Cantidad y distribución de las excretas en el pastizal y su influencia en la fertilidad del suelo. Rev. Cubana Cienc. Agric. 17:1

Crespo, G, y Arteaga, O. 1986. Utilización del estiércol vacuno en la producción de forrajes. Ed. Del Instituto de Ciencia Animal (EDICA), La Habana, Cuba. 31 p.
Cuesta, A. y Crespo, G. 1990. Nota técnica sobre el contenido de N en las lluvias de la región del Instituto de Ciencia Animal. Boletín Técnico N: 5. Serie Pastos. EDICA, La Habana. Cuba p. 113 - 117.

Crespo, G. y Curbelo, F. 1992. Influencia del estiércol vacuno y el fertilizante mineral en el rendimiento de Pennisetum purpureum vc. King grass en un suelo Ferralítico rojo. Rev. Cubana Cienc. Agríc. 26:_79

Crespo, G., Torres, V. y Rodríguez, I. 1995. Una nota acerca de la tasa de descomposición de las bostas durante la estación seca. Rev. Cubana Cienc. Agric. 29:251.

Crespo, G. 1996 Estudio de la producción de hojarasca en pastizales de gramíneas y leguminosas tropicales. Resum. XXX Aniv. Estación de Pastos y Forrajes. Indio Hatuey, Matanzas, Cuba. p. 12.

Crespo, G., Cuesta, A. y Torres, V. 1997. Estudio de la volatilización de N-NH3 en bostas de vacas en diferentes meses del año. Nota técnica. Rev. Cubana Cienc. Agric. 31:149.

Crespo, G., Castillo, E.y Rodríguez, I. 1998. Estudio del reciclaje de N, P y K en dos sistemas de producción de carne en pastoreo. Mem. III Taller Internacional Silvopastoril. Matanzas, Cuba, p. 234.

Crespo, G., Flores, A., Febles, G. y Díaz, H. 1998. Influencia de la distribución de las bostas de vacas lecheras en un pastizal de Cynodon nlemfuensis en la estación seca. Rev. Cubana Cienc. Agric. 32:83

Rodríguez, I., Crespo, G. y Fraga, S. 1998. Estudio de la descomposición de bostas vacunas en condiciones de pastoreo. Informe Departamento de Pastos. Instituto de Ciencia Animal. La Habana, Cuba.

Crespo, G. y Pérez, A.A. 2000. Significado de la hojarasca en el reciclaje de los nutrientes en los pastizales permanentes. Rev. Cubana Cienc. Agríc. 33:349
Cuesta, A., Crespo, G. y Torres, V. 2000. Una nota sobre la volatilización de N-NH ${ }_{3}$ de la orina de vacas lecheras en diferentes períodos del año. Rev. Cubana Cienc. Agríc. 34:163.

Crespo, G., Rodríguez, I. y Martínez, R.O. 2000. Balance de N-P-K en un sistema de producción de leche con pastizal de C. nlemfuensis y banco de biomasa de P. purpureum clon CT-115. Rev. Cubana Cienc. Agríc. 34:167.

Crespo G. y J. Lazo 2001. Estudio de la biomasa de raíces de C. nlemfuensis cv panameño, P. maximum cv likoni D. annulatum sp. y su aporte de nutrientes. Rev. Cubana Cienc. Agric. 35:277.

Crespo, G y Fraga, S. 2002. Nota técnica acerca del aporte de hojarasca y nutrientes al suelo por las especies Cajanus cajan (L.) Millps y Albizia lebbeck (L.) Benth en sistemas silvopastoriles. Rev. Cubana Ciencia agrícola 36:397.

Rodríguez, I., Crespo, G., Rodríguez, C y Fraga, S. 2002. Comportamiento de la macrofauna del suelo en pastizales con gramíneas naturales o intercalada con leucaena para la ceba de toros. Rev. Cubana Cienc. Agrí.. 36:181.

Rodríguez, I., Crespo, G., Fraga, S. y Prieto, D. 2003. Actividad de la macrofauna y la mesofauna en las bostas durante su proceso de decomposición. Rev. Cubana Cienc. Agríc. 37:319.
Rodríguez, I., Crespo, G., Torres, V y Fraga, S. 2003. Distribución de las bostas vacunas en dos agroecosistemas de gramíneas mejoradas y árboles en el trópico. Rev. Cubana Cien. Agríc. 37:73.
Crespo, G. 2005. Efecto de la intensidad de bosteo de vacas lecheras en el pastizal. En Evaluación y rescate de la fertilidad de los suelos y la producción de pastos y forrajes en una granja ganadera de La Habana. Informe Final de Proyecto. Programa Ramal de Recursos Naturales, MINAGRI, La Habana.

Rodríguez, I., Crespo, G., Torres, V. y Fraga, S. 2005. Efecto de las bostas y la orina en la composición química del pasto y su efecto en el suelo en condiciones de pastoreo o no. Rev. Cubana Cienc. Agríc. 39:305
Crespo, G., Rodríguez, I., Otero, L., Calero, B. y Fraga, S. 2006. Metodología para la evaluación integral del estado de fertilidad de los suelos en una región ganadera de La Habana. Rev. Cubana Cienc. Agríc. 40:495.
G. Crespo., Rodríguez, I., Fraga, S., Reyes.J., Milera, M. y Hernández, M. 2008. El reciclaje de nutrimentos y la fertilidad del suelo. En: André Voisin: Experiencia y aplicación de su obra en Cuba. Editora: Milagros de la C. Milera Rodríguez, SOCUP, ACPA. CUBA. p. 265
Rodríguez, I., Crespo, G., Torres, G., Calero, B., Morales, A., Otero, L., Hernández, L., Fraga, S., y Santillán, B. 2008. Evaluación integral del complejo suelo-planta- animal en una unidad lechera, con silvopastoreo, en la provincia La Habana. Rev. Cubana Cien. Agríc. 42:403

